Learning to Trick Robots into Cooperative Behavior

Jen Jen Chung

Autonomous Agents and Distributed Intelligence Lab
Oregon State University

UAV Package Delivery

- Increasing interest in delivery drones: UPS, Amazon, etc.
- Dense UAV traffic in cluttered urban environment
- No current framework for large scale coordination

A Cross-Section of the Airspace

- Automated UAV traffic management
- Challenges:
 - Narrow thoroughfares of dense traffic
 - Heterogeneous UAVs
 - Dynamic obstacle landscape
- Goals
 - Minimize conflict occurrences
 - Avoid cascading effects
 - Maintain throughput

Multiagent UAV Traffic Management (UTM)

- Divide airspace into sectors
 - Assign single UTM agent to manage each sector
- Multiagent team:
 - UTM agents individually learn policy for assigning sector traversal costs
 - Reward is total number of conflicts in global system

UTM Learning Agents

- Learn the cost of travel to apply to UAVs in the sector
- Neural network control
 - Inputs: UAV counts in sector
 - Separate into traffic types, e.g. heading, priority, platform etc.
 - Outputs: Cost of through-sector travel for each traffic type
- Cooperative coevolution to learn NN weights
 - Fitness value: number of conflicts

Evolutionary Algorithms for Learning Control Policies

Simulation Experiments

- Urban airspace
 - 256×256 cell map of San Francisco
 - 15 Voronoi partitions
- Fitness calculation
 - Linear: no. conflicts at each cell summed
 - Quadratic: no. conflicts at each cell squared and summed

Simulation Experiments

Sector agents

- Initialized with population of 10 NN control policies, 10% mutation noise
- Inputs: $\{n_N, n_S, n_E, n_W\}$
- Outputs: $\{c_N, c_S, c_E, c_W\}$
- Fitness: number of conflicts

UAVs

- Stochastically generated from predefined set of start and goal locations
- Approximately 100 UAVs in airspace during single learning epoch
- A* planning at both sector- and low-level
- Conflict radius: 2 cells (approx. 4m)

Learning Results: Total Conflicts

- Team performance over 100 learning epochs
- Averaged over 20 trials
- 16% reduction in total system conflicts

Congestion Reduction: Linear Cost Fitness Function

Random initialized sector costs

Learned sector costs

Congestion Reduction: Quadratic Cost Fitness Function

Random initialized sector costs

Learned sector costs

Extensions to Sector Agent Control Policies

- Not all UAVs in the airspace are equal
- Account for UAV type in NN inputs and outputs

Weighted

Cross-weighted

Multi-mind

Oregon State

Risk-Aware Graph Search (RAGS)

- Graph search with uncertain edge costs
 - Normal distributions
- Bound path set
 - Domination according to mean and variance

$$A < B \Leftrightarrow (A.c < B.c) \land (A.\sigma^2 < B.\sigma^2)$$

RAGS Path Execution

The probability that traveling via B will yield a cheaper path than traveling via A

$$\int_{-\infty}^{\infty} \sum_{i=1}^{m} P\left(c_{A_i} = x; c_{A_j} > x, \forall j \neq i\right) \cdot 1 - P\left(c_{B_i} > x, \forall i \in \{1, \dots, n\}\right) dx$$

RAGS vs. Existing Planning Algorithms

- Testing on graph with 100 vertices
 - 3 sets of edge cost distributions

Edge cost = Euclidean distance
$$+\varepsilon$$
, $\varepsilon \sim \mathcal{N}(\mu, \sigma^2)$

$$\mu \in [0,100]$$

$$\sigma^2 \in [0, \sigma_{\text{max}}^2], \quad \sigma_{\text{max}}^2 = \{5,10,20\}$$

- Compared against
 - Naïve A* on the mean
 - Greedy on bounded path set
 - D*

RAGS vs. Existing Planning Algorithms

RAGS Integration with UTM Agents

Comparison of A* and RAGS

Progression of Best System Reward -1530 -1535 -1540System reward -1550 -1555 -1560-1565 weighted -1570xweight -1575 — 0 30 60 70 90 100 **Epoch**

UAVs planning with A*

UAVs planning with RAGS

Conclusions and Future Work

- Implicit cooperation by learning individual control policies trained on global reward structures
- Risk-aware graph search accounts for modeled uncertainties in the environment
- Initial integration of high and low-level decision making shows faster learning rates
- Future work
 - Reward shaping to improve UTM agent policies
 - Theoretical guarantees of RAGS
 - Validation and verification

Acknowledgements

Professors

Graduate Students

Undergrads

Interns

