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CONTEXT

B Indoor environment with static obstacles

B Multi-robot system composed by nonhonolomic mobile robots

B Robots’ limited perception of the environment

B Robots’ limited communication range
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OBJECTIVES

Development of a real-time motion planning algorithm for a multi-robot system

B Real-time generation of collision-free trajectories

B Precise reaching of goal configuration

B Minimization of travel time
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CHOICES & REFERENCES

B Distributed approach over centralized approach

== Drawbacks: less optimal
= Advantages: computation time, security, communication

B Local planning over global planning

B Base algorithm:

M. Defoort, A. Kokosy, T. Floquet, et al. Motion planning for
cooperative unicycle-type mobile robots with limited sensing ranges:

A distributed receding horizon approach. Robotics and Autonomous
Systems 57(11):1094-1106, 2009. doi:10.1016/j.robot.2009.07.004.
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MOTION PLANNING DESCRIPITON

B Constrained optimization problems numerically solved

B Local planning computation by using a receding horizon approach

B Distributed planning performed by postponing the consideration of
coupling constraints, meaning inter-robot communication and collision

avoidance

B Planning in the flat space rather than state space. The solution is denoted
z*(t) where z(t) is the flatoutput

B Solution represented by B-splines (minimal support)
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CONSTRAINED OPTIMIZATION PROBLEM

Constraints

Kinematic model

Initial state

Goal state

Bounded input (control) vector

Obstacle avoidance

Inter-robot collision Coupling
Lost of communication constraints

Objective function to be minimized

B Travel time
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RECEDING HORIZON APPROACH

B Planning horizon (T})
B Computation horizon (T,)
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SYSTEM FLATNESS

Complete description of the system behavior using the flat output and its
derivatives

State space

1 (@b, u,(t)
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cea POSTPONING COUPLING CONSTRAINTS (NLPy1,)

Constraints

Initial state

Goal state

Bounded input (control) vector

Obstacle avoidance

Inter-robot collision Coupling
Lost of communication constraints

Objective function to be minimized

B Geodesic distance from planned configuration at T,, to the goal configuration
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TAKING THEM INTO ACCOUNT (NLP, 1 2)

Constraints

Initial state

Goal state

Bounded input (control) vector

Obstacle avoidance

Inter-robot collision Coupling
Lost of communication constraints
Deviation from Zy, ;, (t)

Objective function to be minimized

B Geodesic distance from planned configuration at T, to the goal configuration
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TERMINATION PLANNING

B Stop receding planning when close to the goal configuration
B Compute new time sampling and b-spline parameters

B Change NPLs to consider goal state
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NLP, 1, = NLPy o4

Constraints

Initial state

Goal state

Bounded input (control) vector

Obstacle avoidance

Inter-robot collision Coupling
Lost of communication constraints

Objective function to be minimized

B Time to reach the goal state
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NLPy 11 = NLPy 3>

Constraints

Initial state

Goal state

Bounded input (control) vector

Obstacle avoidance

Inter-robot collision Coupling
Lost of communication constraints
Deviation from Zy, ;, (t)

Objective function to be minimized

B Time to reach the goal state
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SUMMARIZING

NLP Goal Coupling
constraints | constraints

NLPy 1 4

NLPy X
NLPy ;4 X

NLPy; X X
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MOTION PLANNING DIAGRAM

Is conflict
sets
empty?
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MOTION PLANNING DIAGRAM

Update detected
obstacles,
configuration, ...

Compute new
Ns; Nknots

Compute
conflict sets

Solve NLPy,; 4

Exchange intented
trajectories with all
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Solve NLPy; robots in sets
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C2Aa  SIMULATIONS

B Kinematic simulation example

== Planning horizon: 2.0 s;

== Planning horizon: 0.5 s;

== 11Me samples for numerically solving the NLPs: 14 s;
== Number of internal knots for B-spline representation: 4;
== 3 robots;

== 3 Obstacles;

== Max velocities [1.0m/s, 5.0rad/s]’;
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SIMULATIONS

Without coupling constraints (NLP, 5 ;)
Generated trajectory
Yot=—j !
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SIMULATIONS

With coupling constraints (NLPy ; 5)

Generated trajectory
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C2Aa  SIMULATIONS

Algorithm parameters analysis

Number of time samples (N.)

Number of internal knots for B-splines (Ny;q:s)
Planning horizon (T,)

Computation horizon (T,)

Detection radius of the robots
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SIMULATIONS

B “Maximum Computation Time"/ Tc (real-time hypothesis)
== AN increasing number of N¢ increases MCT/Tc at O(N,) with SLSQP
== AN increasing number of N, increases MCT/Tc at O(N3,,,.;;) with SLSQP

Computation cost behavior, Ny, ors = 4 Computation cost behavior, Ni,ots = 6
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C2Aa  SIMULATIONS

B “Maximum Computation Time"/ Tc (real-time hypothesis)
== AN increasing number of N¢ increases MCT/Tc at O(N,) with SLSQP
== AN increasing number of N, increases MCT/Tc at O(N3,,,.;;) with SLSQP

== AN increasing of the obstacles detection radius d,, increases MCT/Tc

3.5 MCT/T, and detection radius relationship
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Simulations run on an Intel Xeon CPU 2.53GHz processor
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SIMULATIONS

B Obstacle penetration area P (obstacle avoidance P = 0)
== Penetration area P decreasing as the number of samples N, increases

90 Time sampling and obstacle penetration relationship
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B Travel time (optimization)
= Travel time decreases with the planning horizon T,
== Travel time decreases with the number of samples N,

== NO high influence of the obstacles detection radius d..,

10.0 Total execution time and detection radius relationship
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C22A CONCLUSIONS & PERSPECTIVES

B Motion planner based on:
== System flatness property,
== B-spline parameterization of the flat output
= SLSQP optimizer

B Enhancement of this cooperative multi-robot systems motion planner, with:
== t€rmination constraints consideration
== Circle and convex polygon representation of obstacles

B Kinematic simulation with 3 mobile robots in presence of obstacles

B Analyze of Impact of different parameters, to guarantee
== Real time implementation
== Obstacles avoidance
== |ravel time optimality

B Work in progress in physics simulation environment, taking into account:
== Vehicle dynamics
== SENSOrs models
== COMMunication latency

B Future tests in real conditions with monocycle robots
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