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CONTEXT
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Indoor environment with static obstacles

Multi-robot system composed by nonhonolomic mobile robots

Robots’ limited perception of the environment

Robots’ limited communication range



OBJECTIVES
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Development of a real-time motion planning algorithm for a multi-robot system

Real-time generation of collision-free trajectories

Precise reaching of goal configuration

Minimization of travel time



CHOICES & REFERENCES
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Distributed approach over centralized approach
Drawbacks: less optimal
Advantages: computation time, security, communication

Local planning over global planning

Base algorithm:

M. Defoort, A. Kokosy, T. Floquet, et al. Motion planning for 
cooperative unicycle-type mobile robots with limited sensing ranges: 
A distributed receding horizon approach. Robotics and Autonomous 
Systems 57(11):1094–1106, 2009. doi:10.1016/j.robot.2009.07.004.



MOTION PLANNING DESCRIPITON
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Constrained optimization problems numerically solved

Local planning computation by using a receding horizon approach

Distributed planning performed by postponing the consideration of 
coupling constraints, meaning inter-robot communication and collision 
avoidance

Planning in the flat space rather than state space. The solution is denoted 
𝑧∗(𝑡) where 𝑧(𝑡) is the flatoutput

Solution represented by B-splines (minimal support)



CONSTRAINED OPTIMIZATION PROBLEM
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Constraints

Kinematic model

Initial state
Goal state
Bounded input (control) vector
Obstacle avoidance
Inter-robot collision                     Coupling
Lost of communication constraints

Objective function to be minimized

Travel time



Planning horizon (𝑇𝑝)
Computation horizon (𝑇𝑐)
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RECEDING HORIZON APPROACH



Complete description of the system behavior using the flat output and its 
derivatives

SYSTEM FLATNESS
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POSTPONING COUPLING CONSTRAINTS (𝑁𝐿𝑃𝑏,1,1)
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Constraints

Kinematic model

Initial state
Goal state
Bounded input (control) vector
Obstacle avoidance
Inter-robot collision                     Coupling
Lost of communication constraints

Objective function to be minimized

Geodesic distance from  planned configuration at 𝑇𝑝 to the goal configuration



TAKING THEM INTO ACCOUNT (𝑁𝐿𝑃𝑏,1,𝟐)
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Constraints

Kinematic model

Initial state
Goal state
Bounded input (control) vector
Obstacle avoidance
Inter-robot collision                     Coupling
Lost of communication constraints
Deviation from  𝑧b,𝜏𝑘(𝑡)

Objective function to be minimized

Geodesic distance from  planned configuration at 𝑇𝑝 to the goal configuration



Stop receding planning when close to the goal configuration

Compute new time sampling and b-spline parameters

Change NPLs to consider goal state
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TERMINATION PLANNING



𝑁𝐿𝑃𝑏,𝟏,1 ⇒ 𝑁𝐿𝑃𝑏,𝟐,1
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Constraints

Kinematic model

Initial state
Goal state
Bounded input (control) vector
Obstacle avoidance
Inter-robot collision                     Coupling
Lost of communication constraints

Objective function to be minimized

Time to reach the goal state



𝑁𝐿𝑃𝑏,𝟏,1 ⇒ 𝑁𝐿𝑃𝑏,𝟐,𝟐
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Constraints

Kinematic model

Initial state
Goal state
Bounded input (control) vector
Obstacle avoidance
Inter-robot collision                     Coupling
Lost of communication constraints
Deviation from  𝑧b,𝜏𝑘(𝑡)

Objective function to be minimized

Time to reach the goal state



SUMMARIZING

NLP Goal 

constraints

Coupling

constraints

𝑁𝐿𝑃𝑏,1,1

𝑁𝐿𝑃𝑏,1,2 X

𝑁𝐿𝑃𝑏,2,1 X

𝑁𝐿𝑃𝑏,2,2 X X
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MOTION PLANNING DIAGRAM
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Update detected

obstacles, 

configuration, tref = t, ...

Solve 𝑵𝑳𝑷𝒃,𝟏,𝟏
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conflict sets

Is conflict 
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empty?

Sync with all 

robots in 

conflict sets
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trajectories with all 
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MOTION PLANNING DIAGRAM
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Update detected
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configuration, ...

Solve 𝑵𝑳𝑷𝒃,𝟐,𝟏
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sets 

empty?

Sync with all 

robots in 

conflict sets

Exchange intented

trajectories with all 

robots in conflict 

sets

Solve 𝑵𝑳𝑷𝒃,𝟐,𝟐

 𝑞,  𝑢

No

1

Yes

Compute new 

𝑵𝒔, 𝑵𝒌𝒏𝒐𝒕𝒔

Finish

𝑞∗
𝜏𝑘

, 𝑢∗
𝜏𝑘

𝑞∗
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SIMULATIONS

Kinematic simulation example

Planning horizon: 2.0 𝑠;

Planning horizon: 0.5 𝑠;

Time samples for numerically solving the NLPs: 14 𝑠;

Number of internal knots for B-spline representation: 4;

3 robots;

3 obstacles;

Max velocities [1.0𝑚/𝑠, 5.0𝑟𝑎𝑑/𝑠]𝑇;

Workshop on On-line decision-making in multi-robot coordination |  PAGE 17



SIMULATIONS
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Without coupling constraints (𝑁𝐿𝑃𝑏,2,1)



SIMULATIONS
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With coupling constraints (𝑁𝐿𝑃𝑏,2,2)



Algorithm parameters analysis

Number of time samples (Ns)

Number of internal knots for B-splines (Nknots)

Planning horizon (Tp)

Computation horizon (Tc)

Detection radius of the robots

SIMULATIONS
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SIMULATIONS
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Computation cost behavior, 𝑁𝑘𝑛𝑜𝑡𝑠 = 4 Computation cost behavior, 𝑁𝑘𝑛𝑜𝑡𝑠 = 6

“Maximum Computation Time"/ Tc (real-time hypothesis)

An increasing number of Ns increases MCT/Tc at O(Ns) with SLSQP

An increasing number of Nknots increases MCT/Tc at O(N3
knots) with SLSQP

Computation cost behavior, 𝑁𝑘𝑛𝑜𝑡𝑠 = 5



SIMULATIONS
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Simulations run on an Intel Xeon CPU 2.53GHz processor

“Maximum Computation Time"/ Tc (real-time hypothesis)

An increasing number of Ns increases MCT/Tc at O(Ns) with SLSQP

An increasing number of Nknots increases MCT/Tc at O(N3
knots) with SLSQP

An increasing of the obstacles detection radius dsen increases MCT/Tc



SIMULATIONS
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Obstacle penetration area P (obstacle avoidance 𝑃 = 0)

Penetration area P decreasing as the number of samples Ns increases

Travel time (optimization)

Travel time decreases with the planning horizon Tp

Travel time decreases with the number of samples Ns

No high influence of the obstacles detection radius dsen



CONCLUSIONS & PERSPECTIVES
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Motion planner based on:

system flatness property, 

B-spline parameterization of the flat output 

SLSQP optimizer

Enhancement of this cooperative multi-robot systems motion planner, with:

termination constraints consideration

circle and convex polygon representation of obstacles

Kinematic simulation with 3 mobile robots in presence of obstacles

Analyze of Impact of different parameters, to guarantee

Real time implementation

Obstacles avoidance

Travel time optimality

Work in progress in physics simulation environment, taking into account:

vehicle dynamics

sensors models

communication latency

Future tests in real conditions with monocycle robots
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