
Adaptive Distribution of a Swarm
of Heterogeneous Robots

Amanda Prorok, M. Ani Hsieh, Vijay Kumar

Workshop on On-line decision-making in multi-robot coordination
IROS 2015

Penn
Engineering

GRASP
Laboratory

General Robotics,Automation, Sensing & Perception Lab

Introduction
How do we design heterogeneous multi-robot

systems to maximize performance?
Diversity Metric

Design Paradigm

* Image credits: M. Egerstedt, Georgia Tech

*

Examples

Collaborative mapping / perception

•  Complementary mobility
•  Complementary sensing ability
•  Distinct autonomy constraints
•  Distinct sizes

2 The stick pulling experiment

2.1 The physical setup

The experiment is carried out in a circular arena (80 cm of diameter) delimited by a white
wall. Four holes situated at the corners of a square with 30 cm edges, contain white sticks
(15 cm long, diameter of 1.6 cm) which, in their lowest position, stick 5 cm out of the
ground (Figure 1).

Figure 1: Physical set-up for the stick pulling experiment.

Groups of 2 to 6 Khepera robots, equipped with gripper turrets, are used to pull
the sticks out of the ground. Because of their thinness, the sticks can be distinguished
from the wall and from other robots3 using the six frontal IR proximity sensors of the
Khepera. Two Kheperas are necessary for pulling a stick completely out of the ground.
Collaboration is thus required, with a first robot taking the stick half out of the ground,
until a second robot approaches the stick from the opposite direction and lifts the stick
completely (see the right hand-side of Figure 1 and Figure 3). As described in the next
section, the robots are able to determine whether another robot is holding the same stick
using information about the gripper’s arm position. After a successful collaboration, the
stick taken out of the ground is released by the robot, and replaced in its hole by the
experimenter.

2.2 The robots’ controllers

The behavior of a robot is determined by a simple hand-coded program consisting of a
loop through several functional blocks (Figure 2). The default behavior is to look for
sticks, that is, to wander in the arena in a straight line until something is detected by the
frontal proximity sensors, in which case the robot turns towards the detected object and
starts a detection procedure. The detection procedure consists of taking multiple sensor
samples of the same object with the robot turning on itself once to the left and once
to the right (similarly to (Martinoli et al., 1999a)). A stick is recognized from obstacles
(the wall or other robots) if, within these measurements, the number of proximity sensors

3To increase their reflectivity, robots have a belt of white paper, as well as a thin band of IR-reflective
stickers in their back (not shown on the picture).

6

Collaborative manipulation / construction

•  Diverse grippers
•  Complementary manipulation behaviors

quadrotor can hover at any specified position. Second, the
quadrotor can execute a specified trajectory between any two
desired points. Third, the quadrotor can apply open-loop yaw
moments to test successful assembly of a part.

At a higher level, multiple quadrotors are coordinated using
a finite state automaton to perform the assembly of a specified
SCS efficiently and safely (Sec. IV-B) like in Fig. 5.

Fig. 5. Intermediate snapshots of a pyramid-like SCS being built by three
quadrotors

A. Quadrotor Control
The quadrotor controller is illustrated in Fig. 6. Because the

quadrotors operate at near hover conditions, we use controllers
derived from the linearized equations of motion defined in [15]
where the roll and pitch angles, � and ✓, are proportional to
accelerations in x and y. An inner loop controls the attitude
of the robot similar to the approach used in other work [6],
[10], [12], [15]. An outer position control loop prescribes the
desired roll and pitch angles required to achieve the desired
accelerations.

Let r
T

(t) and

T

(t) be the trajectory and yaw angle
we are trying to track. The command accelerations in the
ith direction, r̈

des

i

, are calculated from PID feedback of the
position error, r

i,T

� r

i

. Note that the desired velocities and
accelerations are given by ṙ

i,T

= r̈

i,T

= 0 for hover. Here
the integral control terms constantly adapt to the changing
mass and center of mass of the system due to the changing
payload. The desired roll and pitch angles are then calculated
from the first two components of the desired acceleration while

des =

T

is specified for each task.
The four desired motor speeds, !des

i

, are calculated from
four rotor speed differentials (�!

✓

,�!
�

,�!

,�!
F

) and the
nominal rotor speed required to hover, !

h

, through a constant
linear transformation:

2

664

!

des

1

!

des

2

!

des

3

!

des

4

3

775 =

2

664

1 0 �1 1
1 1 0 �1
1 0 1 1
1 �1 0 �1

3

775

2

664

!

h

+ �!
F

�!
�

�!
✓

�!

3

775 . (1)

The attitude control block generates motor speed differen-
tials (�!

✓

,�!
�

,�!

) according to PD control on the Euler
angles and the angular velocities. The fourth motor speed
differential, �!

F

, is derived from the desired acceleration in
the z-direction.

As in [15], the high-level position control loop runs on a
control computer that receives the quadrotor pose estimates
from VICON. Interprocess communication on the control com-
puter is handled by ROS [19] and a ROS-MATLAB bridge [2].
The control computer sends inputs to the ARM7 processor on

Fig. 6. Control Loops for position and attitude control

Hover at P1 
Hover at 

P2 

Execute 

trajectory from 

P1 to P2 

Release and 

Ascend 

Yaw 

Le= 

Yaw 

Right 

|
error

| >

max

|
error

| >

max

Failed assembly, 

repeat aEempt 

Fig. 7. Composition of (a) hover controller; (b) trajectory controller; and (c)
yaw controller for assembling a part to a partially-completed SCS.

the quadrotors via ZIGBEE at a fixed rate of 100 Hz, which
runs the low-level attitude control loop and computes the
desired motor speeds.

B. Finite State Automaton
In this section we will describe the Finite State Automaton

that coordinates the concurrent action of multiple quadrotors
to enable multiple quadrotor experiments.

States in the FSA: We use a FSA with five states as
shown in Fig. 8. We require that only one quadrotor is
retrieving parts from the part bins and that only one quadrotor
is assembling parts to the SCS. Waiting_on_Bin and
Waiting_for_Assembly have FIFO (First In, First Out)
queues, where the quadrotors hover in place until the part
bins or the SCS become available. At the conclusion of the
experiment, each quadrotor transitions to the Finish state.

Assembly Finish

Waiting_for_

Assembly
Picking_up

Waiting_

on_bin

~tower_in_use &

first_in_queue
~bin_in_use &

first_in_queue

No_parts

CSC Complete|

No_parts

Fig. 8. The finite state automaton for picking up and assembling parts using
multiple quadrotors.

To avoid collisions between the quadrotors, we de-
sign the layout for assembly accordingly. The part bins,
the SCS, the hover positions for Waiting_on_Bin and
Waiting_for_Assembly are located around the perimeter
of a loop such that no two paths taken by the quadrotors
are close to each other at any given time. Furthermore, we
add delays between state transitions to ensure that a quadrotor
serving the part bins or assembling the structure has sufficient
time to leave the area before another quadrotor enters that
same area.

Picking Up Parts: Columns are stored vertically in one
bin while horizontal members and modules are stored hori-
zontally in a different bin. To pick up columns, the quadrotor
approaches and hovers in place above the specified column. It
subsequently descends to a height such that when the grippers

(a) Mapping an indoor environment with a ground robot

(b) Mapping a stairwell environment with an aerial robot

Figure 7.2: Results with ground and air robots. (a) Mapping an indoor environment with
a ground robot equipped with a RGB-D sensor. (b) Mapping a stairwell environment
with an aerial robot equipped with a RGB-D sensor. We accomplish this by using a two
stage planning approach: 1) using a global planner to choose trajectories that maximize an
information-theoretic objective based on the Cauchy-Schwarz quadratic mutual information
(CSQMI), and 2) locally optimizing portions of the trajectory to maximize the CSQMI
objective.

suggest that including both global plans, local motion primitives, and trajectory optimiza-

tion reduces the time to explore an environment by 70% compared to a closest frontier

exploration strategy [143] and 57% compared to our previous information-based strat-

egy Ch. 6. while simulations demonstrate the approach extends to aerial robots with

higher-dimensional state.

This chapter will appear in [19].

120

(a) Mapping an indoor environment with a ground robot

(b) Mapping a stairwell environment with an aerial robot

Figure 7.2: Results with ground and air robots. (a) Mapping an indoor environment with
a ground robot equipped with a RGB-D sensor. (b) Mapping a stairwell environment
with an aerial robot equipped with a RGB-D sensor. We accomplish this by using a two
stage planning approach: 1) using a global planner to choose trajectories that maximize an
information-theoretic objective based on the Cauchy-Schwarz quadratic mutual information
(CSQMI), and 2) locally optimizing portions of the trajectory to maximize the CSQMI
objective.

suggest that including both global plans, local motion primitives, and trajectory optimiza-

tion reduces the time to explore an environment by 70% compared to a closest frontier

exploration strategy [143] and 57% compared to our previous information-based strat-

egy Ch. 6. while simulations demonstrate the approach extends to aerial robots with

higher-dimensional state.

This chapter will appear in [19].

120

Collaborative Perception

One robot type cannot cater to all aspects of a task

Collaborative mapping / perception

•  Complementary mobility
•  Complementary sensing ability
•  Distinct autonomy constraints
•  Distinct sizes

2 The stick pulling experiment

2.1 The physical setup

The experiment is carried out in a circular arena (80 cm of diameter) delimited by a white
wall. Four holes situated at the corners of a square with 30 cm edges, contain white sticks
(15 cm long, diameter of 1.6 cm) which, in their lowest position, stick 5 cm out of the
ground (Figure 1).

Figure 1: Physical set-up for the stick pulling experiment.

Groups of 2 to 6 Khepera robots, equipped with gripper turrets, are used to pull
the sticks out of the ground. Because of their thinness, the sticks can be distinguished
from the wall and from other robots3 using the six frontal IR proximity sensors of the
Khepera. Two Kheperas are necessary for pulling a stick completely out of the ground.
Collaboration is thus required, with a first robot taking the stick half out of the ground,
until a second robot approaches the stick from the opposite direction and lifts the stick
completely (see the right hand-side of Figure 1 and Figure 3). As described in the next
section, the robots are able to determine whether another robot is holding the same stick
using information about the gripper’s arm position. After a successful collaboration, the
stick taken out of the ground is released by the robot, and replaced in its hole by the
experimenter.

2.2 The robots’ controllers

The behavior of a robot is determined by a simple hand-coded program consisting of a
loop through several functional blocks (Figure 2). The default behavior is to look for
sticks, that is, to wander in the arena in a straight line until something is detected by the
frontal proximity sensors, in which case the robot turns towards the detected object and
starts a detection procedure. The detection procedure consists of taking multiple sensor
samples of the same object with the robot turning on itself once to the left and once
to the right (similarly to (Martinoli et al., 1999a)). A stick is recognized from obstacles
(the wall or other robots) if, within these measurements, the number of proximity sensors

3To increase their reflectivity, robots have a belt of white paper, as well as a thin band of IR-reflective
stickers in their back (not shown on the picture).

6

Collaborative manipulation / construction

•  Diverse grippers
•  Complementary manipulation behaviors

quadrotor can hover at any specified position. Second, the
quadrotor can execute a specified trajectory between any two
desired points. Third, the quadrotor can apply open-loop yaw
moments to test successful assembly of a part.

At a higher level, multiple quadrotors are coordinated using
a finite state automaton to perform the assembly of a specified
SCS efficiently and safely (Sec. IV-B) like in Fig. 5.

Fig. 5. Intermediate snapshots of a pyramid-like SCS being built by three
quadrotors

A. Quadrotor Control
The quadrotor controller is illustrated in Fig. 6. Because the

quadrotors operate at near hover conditions, we use controllers
derived from the linearized equations of motion defined in [15]
where the roll and pitch angles, � and ✓, are proportional to
accelerations in x and y. An inner loop controls the attitude
of the robot similar to the approach used in other work [6],
[10], [12], [15]. An outer position control loop prescribes the
desired roll and pitch angles required to achieve the desired
accelerations.

Let r
T

(t) and

T

(t) be the trajectory and yaw angle
we are trying to track. The command accelerations in the
ith direction, r̈

des

i

, are calculated from PID feedback of the
position error, r

i,T

� r

i

. Note that the desired velocities and
accelerations are given by ṙ

i,T

= r̈

i,T

= 0 for hover. Here
the integral control terms constantly adapt to the changing
mass and center of mass of the system due to the changing
payload. The desired roll and pitch angles are then calculated
from the first two components of the desired acceleration while

des =

T

is specified for each task.
The four desired motor speeds, !des

i

, are calculated from
four rotor speed differentials (�!

✓

,�!
�

,�!

,�!
F

) and the
nominal rotor speed required to hover, !

h

, through a constant
linear transformation:

2

664

!

des

1

!

des

2

!

des

3

!

des

4

3

775 =

2

664

1 0 �1 1
1 1 0 �1
1 0 1 1
1 �1 0 �1

3

775

2

664

!

h

+ �!
F

�!
�

�!
✓

�!

3

775 . (1)

The attitude control block generates motor speed differen-
tials (�!

✓

,�!
�

,�!

) according to PD control on the Euler
angles and the angular velocities. The fourth motor speed
differential, �!

F

, is derived from the desired acceleration in
the z-direction.

As in [15], the high-level position control loop runs on a
control computer that receives the quadrotor pose estimates
from VICON. Interprocess communication on the control com-
puter is handled by ROS [19] and a ROS-MATLAB bridge [2].
The control computer sends inputs to the ARM7 processor on

Fig. 6. Control Loops for position and attitude control

Hover at P1 
Hover at 

P2 

Execute 

trajectory from 

P1 to P2 

Release and 

Ascend 

Yaw 

Le= 

Yaw 

Right 

|
error

| >

max

|
error

| >

max

Failed assembly, 

repeat aEempt 

Fig. 7. Composition of (a) hover controller; (b) trajectory controller; and (c)
yaw controller for assembling a part to a partially-completed SCS.

the quadrotors via ZIGBEE at a fixed rate of 100 Hz, which
runs the low-level attitude control loop and computes the
desired motor speeds.

B. Finite State Automaton
In this section we will describe the Finite State Automaton

that coordinates the concurrent action of multiple quadrotors
to enable multiple quadrotor experiments.

States in the FSA: We use a FSA with five states as
shown in Fig. 8. We require that only one quadrotor is
retrieving parts from the part bins and that only one quadrotor
is assembling parts to the SCS. Waiting_on_Bin and
Waiting_for_Assembly have FIFO (First In, First Out)
queues, where the quadrotors hover in place until the part
bins or the SCS become available. At the conclusion of the
experiment, each quadrotor transitions to the Finish state.

Assembly Finish

Waiting_for_

Assembly
Picking_up

Waiting_

on_bin

~tower_in_use &

first_in_queue
~bin_in_use &

first_in_queue

No_parts

CSC Complete|

No_parts

Fig. 8. The finite state automaton for picking up and assembling parts using
multiple quadrotors.

To avoid collisions between the quadrotors, we de-
sign the layout for assembly accordingly. The part bins,
the SCS, the hover positions for Waiting_on_Bin and
Waiting_for_Assembly are located around the perimeter
of a loop such that no two paths taken by the quadrotors
are close to each other at any given time. Furthermore, we
add delays between state transitions to ensure that a quadrotor
serving the part bins or assembling the structure has sufficient
time to leave the area before another quadrotor enters that
same area.

Picking Up Parts: Columns are stored vertically in one
bin while horizontal members and modules are stored hori-
zontally in a different bin. To pick up columns, the quadrotor
approaches and hovers in place above the specified column. It
subsequently descends to a height such that when the grippers

(a) Mapping an indoor environment with a ground robot

(b) Mapping a stairwell environment with an aerial robot

Figure 7.2: Results with ground and air robots. (a) Mapping an indoor environment with
a ground robot equipped with a RGB-D sensor. (b) Mapping a stairwell environment
with an aerial robot equipped with a RGB-D sensor. We accomplish this by using a two
stage planning approach: 1) using a global planner to choose trajectories that maximize an
information-theoretic objective based on the Cauchy-Schwarz quadratic mutual information
(CSQMI), and 2) locally optimizing portions of the trajectory to maximize the CSQMI
objective.

suggest that including both global plans, local motion primitives, and trajectory optimiza-

tion reduces the time to explore an environment by 70% compared to a closest frontier

exploration strategy [143] and 57% compared to our previous information-based strat-

egy Ch. 6. while simulations demonstrate the approach extends to aerial robots with

higher-dimensional state.

This chapter will appear in [19].

120

(a) Mapping an indoor environment with a ground robot

(b) Mapping a stairwell environment with an aerial robot

Figure 7.2: Results with ground and air robots. (a) Mapping an indoor environment with
a ground robot equipped with a RGB-D sensor. (b) Mapping a stairwell environment
with an aerial robot equipped with a RGB-D sensor. We accomplish this by using a two
stage planning approach: 1) using a global planner to choose trajectories that maximize an
information-theoretic objective based on the Cauchy-Schwarz quadratic mutual information
(CSQMI), and 2) locally optimizing portions of the trajectory to maximize the CSQMI
objective.

suggest that including both global plans, local motion primitives, and trajectory optimiza-

tion reduces the time to explore an environment by 70% compared to a closest frontier

exploration strategy [143] and 57% compared to our previous information-based strat-

egy Ch. 6. while simulations demonstrate the approach extends to aerial robots with

higher-dimensional state.

This chapter will appear in [19].

120

Collaborative Manipulation

Idea: A task needs certain capabilities

Approach

Robot community
• Species
• Binary traits

t0 t1 t2 t3

1

2

3

4

5

Fig. 1. Four configurations of a system with 5 tasks (nodes) and 4 traits. The trait abundance per task is represented by a bar plot. The edges of this
strongly connected graph represent the possibility of switching between a pair of tasks. The system’s initial distribution is shown at t0, with subsequent
desired target distributions at t[1,2,3].

in real time. Hence, we consider a strategy that is scalable
in the number of robots and their capabilities, and is robust
to changes in the robot population [4, 8]. An important
property of this strategy is its inherently decentralized ar-
chitecture, with robots switching between tasks (behaviors)
stochastically. The key difference between our work and
previous work is that we formulate our desired state as a
distribution of traits among tasks, instead of specifying the
desired state as a direct measure of the robot distribution.
In other words, our framework allows a user to specify
how much of a given capability is needed for a given task,
irrespective of which robot type satisfies that need. As a
consequence, we do not employ optimization methods that
utilize final robot distributions in their formulations (which
is the case in previous works [4] and [14]). Instead, we
explicitly optimize the distribution of traits, and implicitly
solve the combinatorial problem of distributing the right
number of robots of a given type to the right tasks.

II. PROBLEM FORMULATION

Heterogeneity and diversity are core concepts of this work.
To develop our formalism, we borrow terminology from
biodiversity literature [17]. We define our robot system as
a community of robots. Each robot belongs to a species,
defining the unique set of traits that encodes the robots’ ca-
pabilities. In this work, we will consider binary instantiations
of traits (corresponding to the presence or absence of a given
trait in a species). As an example, a trait might consider the
presence/absence of a particular sensor, such as a camera or
laser range finder. Another trait might consider the capability
of fitting through a passageway with a fixed width. In this
work, we assume that the tasks have been encoded through
binary characteristics that represent the skill sets critical to
task completion.

A. Notation

We consider a community of S robot species, with a
total number of robots N , and N (s) robots per species
such that

∑S
s=1 N

(s) = N . The community is defined by
a set of U traits, and each robot species owns a subset
of these traits. A species is defined by a binary vector

q(s) = [q(s)1 , q
(s)
2 , ..., q

(s)
U]. We can then define a S×U matrix

Q, with rows q(s):

0

1

0

1

0

1

0

1

t0 t1 t2 t3

1

2

3

4

5

D
is

tr
ib

.
o

f
tr

ai
t

1
D

is
tr

ib
.

o
f

tr
ai

t
2

D
is

tr
ib

.o
f

tr
ai

t
3

D
is

tr
ib

.
o

f
tr

ai
t

4

Fig. 2. Evolution over time of the trait distribution as specified by the
distributions shown in Fig. 1. Each subplot represents one trait, indicating
the distribution of that trait over the set of tasks (for each subplot, task 1 is
shown at the bottom and task 5 at the top). The system’s initial distribution is
shown at t0, with subsequent desired target distributions reached at t[1,2,3].

Qsu =

{

0 , if species s does not have trait u
1 , if species s has trait u

We model the interconnection topology of the M tasks via
a directed graph, G = (E ,V) where the set of vertices,
V , represents tasks {1, . . . ,M} and the set of edges, E ,
represents the ordered pairs (i, j), such that (i, j) ∈ V × V ,
and i and j are adjacent. Edges denote the possibility to
switch between two adjacent tasks. We assume the graph G
is a strongly connected graph, i.e., a path exists between any
pair of vertices (in contrast to a fully connected graph, where
an edge exists between any pair of vertices), and we assume
the robots have knowledge of this graph. We assign every

edge in E a transition rate, k
(s)
ij > 0, where k

(s)
ij defines the

transition probability per unit time for one robot of species

s at site i to switch to site j. Here k
(s)
ij is a stochastic

transition rule. We impose a limitation on the maximum

rate of each edge with k
(s)
ij < k

(s)
ij,max. These values can

tasks

trait abundance

trait distribution

Tasks
• Need traits
• Switching

Problem Formulation

t0 t1 t2 t3

1

2

3

4

5

Fig. 1. Four configurations of a system with 5 tasks (nodes) and 4 traits. The trait abundance per task is represented by a bar plot. The edges of this
strongly connected graph represent the possibility of switching between a pair of tasks. The system’s initial distribution is shown at t0, with subsequent
desired target distributions at t[1,2,3].

in real time. Hence, we consider a strategy that is scalable
in the number of robots and their capabilities, and is robust
to changes in the robot population [4, 8]. An important
property of this strategy is its inherently decentralized ar-
chitecture, with robots switching between tasks (behaviors)
stochastically. The key difference between our work and
previous work is that we formulate our desired state as a
distribution of traits among tasks, instead of specifying the
desired state as a direct measure of the robot distribution.
In other words, our framework allows a user to specify
how much of a given capability is needed for a given task,
irrespective of which robot type satisfies that need. As a
consequence, we do not employ optimization methods that
utilize final robot distributions in their formulations (which
is the case in previous works [4] and [14]). Instead, we
explicitly optimize the distribution of traits, and implicitly
solve the combinatorial problem of distributing the right
number of robots of a given type to the right tasks.

II. PROBLEM FORMULATION

Heterogeneity and diversity are core concepts of this work.
To develop our formalism, we borrow terminology from
biodiversity literature [17]. We define our robot system as
a community of robots. Each robot belongs to a species,
defining the unique set of traits that encodes the robots’ ca-
pabilities. In this work, we will consider binary instantiations
of traits (corresponding to the presence or absence of a given
trait in a species). As an example, a trait might consider the
presence/absence of a particular sensor, such as a camera or
laser range finder. Another trait might consider the capability
of fitting through a passageway with a fixed width. In this
work, we assume that the tasks have been encoded through
binary characteristics that represent the skill sets critical to
task completion.

A. Notation

We consider a community of S robot species, with a
total number of robots N , and N (s) robots per species
such that

∑S
s=1 N

(s) = N . The community is defined by
a set of U traits, and each robot species owns a subset
of these traits. A species is defined by a binary vector

q(s) = [q(s)1 , q
(s)
2 , ..., q

(s)
U]. We can then define a S×U matrix

Q, with rows q(s):

0

1

0

1

0

1

0

1

t0 t1 t2 t3

1

2

3

4

5

D
is

tr
ib

.
o

f
tr

ai
t

1
D

is
tr

ib
.

o
f

tr
ai

t
2

D
is

tr
ib

.o
f

tr
ai

t
3

D
is

tr
ib

.
o

f
tr

ai
t

4

Fig. 2. Evolution over time of the trait distribution as specified by the
distributions shown in Fig. 1. Each subplot represents one trait, indicating
the distribution of that trait over the set of tasks (for each subplot, task 1 is
shown at the bottom and task 5 at the top). The system’s initial distribution is
shown at t0, with subsequent desired target distributions reached at t[1,2,3].

Qsu =

{

0 , if species s does not have trait u
1 , if species s has trait u

We model the interconnection topology of the M tasks via
a directed graph, G = (E ,V) where the set of vertices,
V , represents tasks {1, . . . ,M} and the set of edges, E ,
represents the ordered pairs (i, j), such that (i, j) ∈ V × V ,
and i and j are adjacent. Edges denote the possibility to
switch between two adjacent tasks. We assume the graph G
is a strongly connected graph, i.e., a path exists between any
pair of vertices (in contrast to a fully connected graph, where
an edge exists between any pair of vertices), and we assume
the robots have knowledge of this graph. We assign every

edge in E a transition rate, k
(s)
ij > 0, where k

(s)
ij defines the

transition probability per unit time for one robot of species

s at site i to switch to site j. Here k
(s)
ij is a stochastic

transition rule. We impose a limitation on the maximum

rate of each edge with k
(s)
ij < k

(s)
ij,max. These values can

Redistribution of traits (capabilities) among tasks

initial target

How do we redistribute a heterogeneous team of robots?

System

traits

species

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

A. Prorok, M. Ani Hsieh, Vijay Kumar Acta Polytechnica
PREPRINT 2015-08-31

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

The present work focuses on the optimization of
transition rates that enables the robot swarm to con-
verge quickly to a configuration that satisfies a de-
sired trait distribution. The key difference between
our work and previous work is that we formulate our
desired state as a distribution of traits among sites,
instead of specifying the desired state as a direct mea-
sure of the robot distribution. In other words, our
framework allows a user to specify how much of a
given capability is needed for a given task, irrespec-
tive of which robot type satisfies that need. As a
consequence, we do not employ optimization methods
that utilize final robot distributions in their formula-
tions (which is the case in the works presented by [8]
and [13]). Instead, we explicitly optimize the distribu-
tion of traits, and implicitly solve the combinatorial
problem of distributing the right number of robots of
a given type to the right tasks. Indeed, we will later
show that there are cases where multiple final robot
distributions satisfy the desired trait distribution. In
such cases, state-of-the-art strategies require that we
first determine the best final robot distribution (one
that can be reached the fastest), and subsequently op-
timize transition rates using methods such as in [8].

2. Problem Formulation
Heterogeneity and diversity are core concepts of this
work. To develop our formalism, we will borrow ter-
minology from biodiversity literature [14, 15]. We
define our robot system as a community of robots.
Each robot belongs to a species, defining the unique
set of traits that encodes the robots’ capabilities. In
this work, we will consider binary instantiations of
traits (corresponding to the presence or absence of a
given trait in a species). As an example, one trait
might consider the presence/absence of a particular
sensor, such as a camera or laser range finder. An-
other trait might consider the capability of fitting
through a passageway with a fixed width. In this
work, we assume that the tasks have been encoded
through binary characteristics that represent the skill
sets critical to task completion.

2.1. Notation
We consider a community of S robot species, with a
total number of robots N , and N (s) robots per species
such that

∑S
s=1 N (s) = N . The community is defined

by a set of U traits, and each robot species owns a
subset of these traits. A species is defined by a vector

q(s) = [q(s)
1 , q(s)

2 , ..., q(s)
U]. We can then define a S × U

matrix Q, with rows q(s):

Qsu =

{

0 , if species s does not have trait u
1 , if species s has trait u

We model the interconnection topology of the M sites
via a directed graph, G = (E , V) where the set of ver-
tices, V , represents task sites {1, . . . , M} and the set
of edges, E , represents the ordered pairs (i, j), such

that (i, j) ∈ V × V , and i and j are adjacent. We
assume the graph G is a strongly connected graph,
i.e., a path exists between any pair of vertices (in
contrast to a fully connected graph, where an edge
exists between any pair of vertices). In other words,
if the nodes in our graph are physically distributed
sites, then, via some road, we can reach any other
site. We assign every edge in E a transition rate,

k(s)
ij > 0, where k(s)

ij defines the transition probability
per unit time for one robot of species s at site i to

switch to site j. Here k(s)
ij is a stochastic transition

rule. We assume every robot has knowledge of G as

well as all the transition rates of its species k(s)
ij . We

note that this information is represented by a small
number of values (at most M2 ·S values, or much less
if the graph is sparse), and needs to be transmitted
to the robots only once, at the start of a run. We im-
pose a limitation on the maximum rate of each edge

with k(s)
ij < k(s)

ij,max. These values can be determined
by applying system identification methods on the ac-
tual system. For example, in a system where nodes
represent physically distributed sites, the transition
rate represents the rate with which a specific path is
chosen. This value can depend on observed factors,
such as typical road congestion or the condition of
the terrain.

The distribution of the robots belonging to a
species s at time t is described by a vector x(s)(t) =

[x(s)
1 (t), ..., x(s)

M (t)]⊤. Then, if x(s) are the columns of
X(t), and q(s) are the rows of Q, we have the M × U
matrix Y that describes the distribution of traits on
sites. For time t this relationship is given by

Y(t) = X(t) · Q (1)

As we will see in Section 2.3, there may be several
robot distributions X(t) that satisfy this equation for
a given Y(t).

2.2. Problem Statement
The initial state of the system is described by X(0),
and hence, the initial configuration of traits at the
sites is described by Y(0). The time evolution of the
number of robots of species s at site i is given by a
linear law

dx(s)
i

dt
=

∑

∀j|(i,j)∈E

kjix
(s)
i (t) −

∑

∀j|(i,j)∈E

kijx(s)
i (t) (2)

Then, for all species s, our base model is given by

dx(s)

dt
= K(s)x(s) ∀s ∈ 1, . . . , S (3)

where K(s) ∈ RM×M is a rate matrix with the prop-
erties

K(s)⊤
1 = 0 (4)

K(s)
ij ≥ 0 ∀(i, j) ∈ E (5)

2

trait
distribution

robot
distribution

species-traits
matrix

Method

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

A. Prorok, M. Ani Hsieh, Vijay Kumar Acta Polytechnica
PREPRINT 2015-08-31

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

The present work focuses on the optimization of
transition rates that enables the robot swarm to con-
verge quickly to a configuration that satisfies a de-
sired trait distribution. The key difference between
our work and previous work is that we formulate our
desired state as a distribution of traits among sites,
instead of specifying the desired state as a direct mea-
sure of the robot distribution. In other words, our
framework allows a user to specify how much of a
given capability is needed for a given task, irrespec-
tive of which robot type satisfies that need. As a
consequence, we do not employ optimization methods
that utilize final robot distributions in their formula-
tions (which is the case in the works presented by [8]
and [13]). Instead, we explicitly optimize the distribu-
tion of traits, and implicitly solve the combinatorial
problem of distributing the right number of robots of
a given type to the right tasks. Indeed, we will later
show that there are cases where multiple final robot
distributions satisfy the desired trait distribution. In
such cases, state-of-the-art strategies require that we
first determine the best final robot distribution (one
that can be reached the fastest), and subsequently op-
timize transition rates using methods such as in [8].

2. Problem Formulation
Heterogeneity and diversity are core concepts of this
work. To develop our formalism, we will borrow ter-
minology from biodiversity literature [14, 15]. We
define our robot system as a community of robots.
Each robot belongs to a species, defining the unique
set of traits that encodes the robots’ capabilities. In
this work, we will consider binary instantiations of
traits (corresponding to the presence or absence of a
given trait in a species). As an example, one trait
might consider the presence/absence of a particular
sensor, such as a camera or laser range finder. An-
other trait might consider the capability of fitting
through a passageway with a fixed width. In this
work, we assume that the tasks have been encoded
through binary characteristics that represent the skill
sets critical to task completion.

2.1. Notation
We consider a community of S robot species, with a
total number of robots N , and N (s) robots per species
such that

∑S
s=1 N (s) = N . The community is defined

by a set of U traits, and each robot species owns a
subset of these traits. A species is defined by a vector

q(s) = [q(s)
1 , q(s)

2 , ..., q(s)
U]. We can then define a S × U

matrix Q, with rows q(s):

Qsu =

{

0 , if species s does not have trait u
1 , if species s has trait u

We model the interconnection topology of the M sites
via a directed graph, G = (E , V) where the set of ver-
tices, V , represents task sites {1, . . . , M} and the set
of edges, E , represents the ordered pairs (i, j), such

that (i, j) ∈ V × V , and i and j are adjacent. We
assume the graph G is a strongly connected graph,
i.e., a path exists between any pair of vertices (in
contrast to a fully connected graph, where an edge
exists between any pair of vertices). In other words,
if the nodes in our graph are physically distributed
sites, then, via some road, we can reach any other
site. We assign every edge in E a transition rate,

k(s)
ij > 0, where k(s)

ij defines the transition probability
per unit time for one robot of species s at site i to

switch to site j. Here k(s)
ij is a stochastic transition

rule. We assume every robot has knowledge of G as

well as all the transition rates of its species k(s)
ij . We

note that this information is represented by a small
number of values (at most M2 ·S values, or much less
if the graph is sparse), and needs to be transmitted
to the robots only once, at the start of a run. We im-
pose a limitation on the maximum rate of each edge

with k(s)
ij < k(s)

ij,max. These values can be determined
by applying system identification methods on the ac-
tual system. For example, in a system where nodes
represent physically distributed sites, the transition
rate represents the rate with which a specific path is
chosen. This value can depend on observed factors,
such as typical road congestion or the condition of
the terrain.

The distribution of the robots belonging to a
species s at time t is described by a vector x(s)(t) =

[x(s)
1 (t), ..., x(s)

M (t)]⊤. Then, if x(s) are the columns of
X(t), and q(s) are the rows of Q, we have the M × U
matrix Y that describes the distribution of traits on
sites. For time t this relationship is given by

Y(t) = X(t) · Q (1)

As we will see in Section 2.3, there may be several
robot distributions X(t) that satisfy this equation for
a given Y(t).

2.2. Problem Statement
The initial state of the system is described by X(0),
and hence, the initial configuration of traits at the
sites is described by Y(0). The time evolution of the
number of robots of species s at site i is given by a
linear law

dx(s)
i

dt
=

∑

∀j|(i,j)∈E

kjix
(s)
i (t) −

∑

∀j|(i,j)∈E

kijx(s)
i (t) (2)

Then, for all species s, our base model is given by

dx(s)

dt
= K(s)x(s) ∀s ∈ 1, . . . , S (3)

where K(s) ∈ RM×M is a rate matrix with the prop-
erties

K(s)⊤
1 = 0 (4)

K(s)
ij ≥ 0 ∀(i, j) ∈ E (5)

2

— for a large number of robots,
model system as ODE

be determined by applying system identification methods
on the actual system. For example, in a system where
nodes represent physically distributed sites, the transition rate
represents the rate with which a specific path is chosen. This
value can depend on observed factors, such as typical road
congestion or the condition of the terrain. The distribution
of the robots belonging to a species s at time t is described

by a vector x(s)(t) = [x(s)
1 (t), ...,x(s)

M (t)]⊤. Then, if x(s) are
the columns of X(t), and q(s) are the rows of Q, we have
the M ×U matrix Y that describes the distribution of traits
on sites. For time t this relationship is given by

Y(t) = X(t) ·Q (1)

B. System

The initial state of the system is described by X(0), and
hence, the initial distribution of traits at the sites is described
by Y(0). The time evolution of the number of robots of
species s at site i is given by a linear law

dx(s)
i

dt
=

∑

∀j|(i,j)∈E

kjix
(s)
i (t)−

∑

∀j|(i,j)∈E

kijx
(s)
i (t) (2)

Then, for all species s, our base model is given by

dx(s)

dt
= K

(s)
x
(s) ∀s ∈ 1, . . . , S (3)

where K(s) ∈ RM×M is a rate matrix with the properties

K
(s)⊤

1 = 0 (4)

K
(s)
ij ≥ 0 ∀(i, j) ∈ E (5)

These two properties result in the following definition:

K
(s)
ij =

⎧

⎪

⎨

⎪

⎩

k(s)
ji , if i ̸= j, (i, j) ∈ E

0, if i ̸= j, (i, j) /∈ E

−
∑M

i=1,(j,i)∈E k(s)
ij , if i = j

Since the total number of robots and the number of robots
per species is conserved, the system in Eq. 3 is subject to
the constraints

X
⊤ · 1 = [N (1), N (2), . . . , N (S)]⊤ (6)

with X ≽ 0, (7)

where ≽ is an element-wise greater-than-or-equal-to opera-
tor.

C. Problem Statement

Our goal is to redeploy the robots of each species,
distributed according to X(0) initially, so that a desired
trait distribution Y⋆ is reached. In other words, the robots
attempt to organize themselves among tasks such that the
trait demand is met for each task. The problem then consists
of finding an optimal rate matrix K(s)⋆ for each species s
so that the target trait distribution is reached:

K(s)⋆, τ⋆ = argmin
K(s),τ

τ (8)

such that X(τ⋆) ·Q = Y
⋆ (9)

The solution leads to a robot distribution X(τ⋆) that satisfies
Eq. 9, subject to Eq. 6 and Eq. 7. If the robots run the
optimization algorithm on-board, they need knowledge of
abstract state information (i.e, the initial distribution of the
robot swarm among tasks, X(0)). If the optimization is
run off-board, the robots need knowledge of the transition

rates of their species, k
(s)
ij . We note that this information is

represented by a small number of values (at most M2 values
per species, or a much smaller number if the graph is sparse).

III. DIVERSITY METRIC

Since the desired configuration of our system is solely
described through Y⋆, the corresponding final robot distri-
bution X(τ⋆) = X⋆ that reaches the target trait distribution
Y⋆ is not known a priori. In particular, there may be several
X⋆ that satisfy Eq. 9. Hence, we pose the question: Can we

infer properties of the species-trait matrix Q that quantify
how easy it is to find a solution X⋆ that reaches Y⋆?

In the following, we show how Q embodies the diversity
of the robot community, and how we can quantitatively
evaluate the diversity to make conclusions about the system’s
performance.

A. Definitions

Given an unlimited number of robots per species, it may
be possible to reach any given trait distribution Y⋆ with
a subset of the original robot species. We call the species
belonging to this subset eigenspecies, and we refer to the size
of this subset as the eigenspecies cardinality. More formally,
we introduce the following terminology:

Definition 1 (Eigenspecies):
In a robot community described by a species-trait matrix
Q, an eigenspecies set is a subset of Q with minimal
cardinality, such that the system can still reach any target
trait distribution Y⋆. We represent the eigenspecies by a
matrix Q̂ that contains linearly independent rows of Q.

Definition 2 (Eigenspecies cardinality):
The eigenspecies cardinality of a robot community is given
by the cardinality of the eigenspecies set. It is a function
D : {0, 1}S×U → N+ that takes a species-trait matrix Q as
input, and returns the number of linearly independent rows
in Q.

B. Implementation

In this section, we develop the eigenspecies cardinality. In
particular, we demonstrate that the eigenspecies cardinality is
a meaningful quantitative measure of the constraint in Eq. 9.

Proposition 1: The eigenspecies cardinality is

D(Q) = rank(Q) (10)

Proof: The matrix Q⊤ can be rank-factorized into the
product of two matrices A and Q̂ such that Q⊤ = Q̂⊤A⊤

with Q̂ containing a subset of the rows of Q [18]. Since
Y⋆ = X⋆Q = X⋆AQ̂, there exists a robot distribution
X̂ = X⋆A for which X̂Q̂ = Y⋆. Hence, as Q̂ has minimal
size (due to the rank-factorization), Q̂ is an eigenspecies
matrix.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2016 IEEE International Conference on

Robotics and Automation. Received September 15, 2015.

— transition rates for each species

approach requires knowledge of the desired final robot distri-
bution. Indeed, our problem formulation specifies a desired
trait distribution Ȳ without explicit definition of the final
robot distribution X̄. Hence, convex optimization strate-
gies as in [2] are not applicable to our problem. Given this
rationale, we choose an optimization approach that is able
to find optimal transition rates with knowledge of Ȳ and
X(0), without knowledge of X̄. Although fully stochastic
schemes such as Metropolis optimization have been shown
to produce similar results [2], they are not computation-
ally efficient, and are ill-suited to real-time applications. In
the following, we present a differentiable objective function
that can be efficiently minimized through gradient descent
techniques. Additionally, our method explicitly minimizes
the convergence time of K(s), unlike the convex optimiza-
tion methods presented in [2] which approximate K(s) with
a symmetric equivalent (forcing bidirectionally equal transi-
tion rates between tasks).

3.1 Design of Optimal Transition Rates
We combine the solution of the linear ordinary differential
equation, Eq. 3, and Eq. 8 to obtain the solution:

Y(t) =
S
∑

s=1

eK
(s)⋆tx(s)

0 · q(s) (9)

To find the values of K(s)⋆, we consider the error

E = Ȳ −
S
∑

s=1

eK
(s)⋆τx(s)

0 · q(s) (10)

where τ is the time at which the desired distribution is
reached, and formulate our optimization problem as

minimize J (1) = ∥E ∥2F (11)

such that k(s)
ij < k(s)

ij,max

which formulates that a minimum cost is found when the
final trait distribution corresponds to the desired trait dis-
tribution, subject to maximum transition rates k(s)

ij,max. The

notation x(s)
0 is shorthand for x(s)(0). The operator ∥ · ∥F

denotes the Frobenius norm of a matrix. There is no closed-
form solution to the optimization problem in Eq. 11, but we
can use the derivatives of J (1) with respect to the param-
eters to perform gradient descent. So that the implemen-
tation of the optimization function is efficient, it is impor-
tant that the function is differentiable and that an analytical
gradient can be computed. By applying the chain rule, the
derivative of our objective function with respect to the tran-
sition matrix K(s) is

∂J (1)

∂K(s)
=

∂J (1)

∂eK(s)τ
·
∂eK

(s)τ

∂K(s)τ
·
∂K(s)τ

∂K(s)
(12)

We first compute the derivative of the cost with respect to

the expression eK
(s)τ .

∂J (1)

∂eK(s)τ
= −2E ·

[

x(s)
0 · q(s)

]⊤
(13)

The derivation of the 2nd element of Eq. 12 requires the
derivative of the matrix exponential. Computing the deriva-
tive of the matrix exponential is not trivial. We adapt the
closed-form solution given in [10] to our problem, and write

the gradient of our cost function as

∂J (1)

∂K(s)
= V−1⊤

[

V⊤ ∂J (1)

∂eK(s)τ
V−1⊤

⊙W(τ)

]

V⊤τ (14)

where ⊙ is the Hadamard product, K(s) = VDV−1 is the
eigendecomposition of K(s). V is the M ×M matrix whose
jth column is a right eigenvector corresponding to eigen-
value di, and D = diag(d1, . . . , dM). The matrix W(t) is
composed as follows 1

W(t) =

{

(edit − edjt)/(dit− djt) i ̸= j
edit i = j

3.2 Optimization of Convergence Time
The cost function in Eq. 11 does not consider convergence
time τ as a variable. By adding a term that penalizes high
convergence time values, we can compute transition rates
that explicitly optimize convergence time. The modified ob-
jective function is

minimize J (2) = J (1) + ατ 2 (15)

such that k(s)
ij < k(s)

ij,max and τ > 0,

and α > 0. By increasing α, we increase the importance of
the convergence time (by penalizing high values of τ). The
derivative with respect to the transition rates is

∂J (2)

∂K(s)
=

∂J (1)

∂K(s)
(16)

In order to optimize the convergence time, we need the
derivative with respect to τ . This derivative is computed
analogously to the derivative with respect to K(s) (confer
Eq. 14). We have

∂J (2)

∂τ
=

∂J (1)

∂τ
+ 2ατ (17)

with

∂J (1)

∂τ
=

S
∑

s=1

1⊤V−1⊤
A1V

⊤K(s)1 (18)

and

A1 = V⊤ ∂J (1)

∂eK(s)τ
V−1⊤

⊙W(τ) (19)

The optimization of Eq. 15 will lead to transition rates that
may lead to the desired trait distribution quickly, but there
is no guarantee that this is the steady state of K(s). If we
compute the transition rates at the outset of the experi-
ment (without refining them online), we may wish to ensure
that the state reached at the optimal time t⋆ remains near-
constant. Hence, we modify our cost function in Eq. 15 as
follows.

min J (3) = J (2) (20)

+ β
S
∑

s=1

∥

∥

∥
eK

(s)τx(s)
0 − eK

(s)(τ+ν)x(s)
0

∥

∥

∥

2

2

such that k(s)
ij < k(s)

ij,max and τ > 0,

1Here, we assume that that K(s) has M distinct eigen-
values. If this is not the case, an analogous decomposition
of K(s) to Jordan canonical form is possible, as elaborated
in [10]. We note that for most models of interest, however,
this is rarely the case.

— solution to the ODE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

A. Prorok, M. Ani Hsieh, Vijay Kumar Acta Polytechnica
PREPRINT 2015-08-31

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

The present work focuses on the optimization of
transition rates that enables the robot swarm to con-
verge quickly to a configuration that satisfies a de-
sired trait distribution. The key difference between
our work and previous work is that we formulate our
desired state as a distribution of traits among sites,
instead of specifying the desired state as a direct mea-
sure of the robot distribution. In other words, our
framework allows a user to specify how much of a
given capability is needed for a given task, irrespec-
tive of which robot type satisfies that need. As a
consequence, we do not employ optimization methods
that utilize final robot distributions in their formula-
tions (which is the case in the works presented by [8]
and [13]). Instead, we explicitly optimize the distribu-
tion of traits, and implicitly solve the combinatorial
problem of distributing the right number of robots of
a given type to the right tasks. Indeed, we will later
show that there are cases where multiple final robot
distributions satisfy the desired trait distribution. In
such cases, state-of-the-art strategies require that we
first determine the best final robot distribution (one
that can be reached the fastest), and subsequently op-
timize transition rates using methods such as in [8].

2. Problem Formulation
Heterogeneity and diversity are core concepts of this
work. To develop our formalism, we will borrow ter-
minology from biodiversity literature [14, 15]. We
define our robot system as a community of robots.
Each robot belongs to a species, defining the unique
set of traits that encodes the robots’ capabilities. In
this work, we will consider binary instantiations of
traits (corresponding to the presence or absence of a
given trait in a species). As an example, one trait
might consider the presence/absence of a particular
sensor, such as a camera or laser range finder. An-
other trait might consider the capability of fitting
through a passageway with a fixed width. In this
work, we assume that the tasks have been encoded
through binary characteristics that represent the skill
sets critical to task completion.

2.1. Notation
We consider a community of S robot species, with a
total number of robots N , and N (s) robots per species
such that

∑S
s=1 N (s) = N . The community is defined

by a set of U traits, and each robot species owns a
subset of these traits. A species is defined by a vector

q(s) = [q(s)
1 , q(s)

2 , ..., q(s)
U]. We can then define a S × U

matrix Q, with rows q(s):

Qsu =

{

0 , if species s does not have trait u
1 , if species s has trait u

We model the interconnection topology of the M sites
via a directed graph, G = (E , V) where the set of ver-
tices, V , represents task sites {1, . . . , M} and the set
of edges, E , represents the ordered pairs (i, j), such

that (i, j) ∈ V × V , and i and j are adjacent. We
assume the graph G is a strongly connected graph,
i.e., a path exists between any pair of vertices (in
contrast to a fully connected graph, where an edge
exists between any pair of vertices). In other words,
if the nodes in our graph are physically distributed
sites, then, via some road, we can reach any other
site. We assign every edge in E a transition rate,

k(s)
ij > 0, where k(s)

ij defines the transition probability
per unit time for one robot of species s at site i to

switch to site j. Here k(s)
ij is a stochastic transition

rule. We assume every robot has knowledge of G as

well as all the transition rates of its species k(s)
ij . We

note that this information is represented by a small
number of values (at most M2 ·S values, or much less
if the graph is sparse), and needs to be transmitted
to the robots only once, at the start of a run. We im-
pose a limitation on the maximum rate of each edge

with k(s)
ij < k(s)

ij,max. These values can be determined
by applying system identification methods on the ac-
tual system. For example, in a system where nodes
represent physically distributed sites, the transition
rate represents the rate with which a specific path is
chosen. This value can depend on observed factors,
such as typical road congestion or the condition of
the terrain.

The distribution of the robots belonging to a
species s at time t is described by a vector x(s)(t) =

[x(s)
1 (t), ..., x(s)

M (t)]⊤. Then, if x(s) are the columns of
X(t), and q(s) are the rows of Q, we have the M × U
matrix Y that describes the distribution of traits on
sites. For time t this relationship is given by

Y(t) = X(t) · Q (1)

As we will see in Section 2.3, there may be several
robot distributions X(t) that satisfy this equation for
a given Y(t).

2.2. Problem Statement
The initial state of the system is described by X(0),
and hence, the initial configuration of traits at the
sites is described by Y(0). The time evolution of the
number of robots of species s at site i is given by a
linear law

dx(s)
i

dt
=

∑

∀j|(i,j)∈E

kjix
(s)
i (t) −

∑

∀j|(i,j)∈E

kijx(s)
i (t) (2)

Then, for all species s, our base model is given by

dx(s)

dt
= K(s)x(s) ∀s ∈ 1, . . . , S (3)

where K(s) ∈ RM×M is a rate matrix with the prop-
erties

K(s)⊤
1 = 0 (4)

K(s)
ij ≥ 0 ∀(i, j) ∈ E (5)

2

— system

Method

Indeed, the rank of Q (which must be ≤ S) quantifies the
number of independent species in Q that span the solution
space of the equation X⋆Q = Y⋆ (with X⋆ unknown):

• If rank(Q) < S, the system is underdetermined, and
an infinite number of solutions X⋆ will satisfy Eq. 9.
In other words, at least one species in the system can
be replaced by a combination of the other species. As
the rank decreases, the redundancy of the community
increases.

• If rank(Q) = S, there is only one solution X⋆ that
satisfies Eq. 9. In other words, no species in the system
can be replaced by a combination of the other species,
and all species are fully complementary.

As an example, consider matrix

Q =

⎡

⎣

1 0 0
0 1 1
1 1 1

⎤

⎦ = A · Q̂ =

⎡

⎣

1 0
0 1
1 1

⎤

⎦ ·

[

1 0 0
0 1 1

]

.

The rank of Q is 2, hence, D(Q) = 2, which is the number
of independent species.

IV. METHODOLOGY

In this section, we describe our methodology for obtaining
an optimal transition matrix K(s)⋆ for each species so
that the desired trait distribution is reached. Two general
approaches have been considered so far [4]: convex opti-
mization and stochastic optimization. The convex optimiza-
tion approach requires knowledge of the desired final robot
distribution. However, our problem formulation specifies a
desired trait distribution Y⋆ without explicit definition of
the final robot distribution X⋆. Fully stochastic schemes
such as Metropolis optimization have been shown to produce
similar results, but they are not computationally efficient,
and are ill-suited to real-time applications. In the following,
we present a differentiable objective function that can be
efficiently minimized through gradient descent techniques.
Our method explicitly minimizes the convergence time of
K(s), unlike the convex optimization methods presented
in [4], which approximate K(s) with a symmetric equivalent
(forcing bidirectionally equal transition rates between sites).
Additionally, it is able to find optimal transition rates with
knowledge of Y⋆ and X(0) only (i.e., without knowledge
of X⋆).

A. Design of Optimal Transition Rates

We combine the solution of the linear ordinary differential
equation, Eq. 3, with Eq. 1 to obtain the solution:

Y(t) =
S
∑

s=1

eK
(s)⋆t

x
(s)
0 · q(s) (11)

To find the values of K(s)⋆, we consider the error

E = Y
⋆ −

S
∑

s=1

eK
(s)⋆τ

x
(s)
0 · q(s) (12)

where τ is the time at which the desired state is reached,
and formulate our optimization problem as

minimize J (1) = ∥E ∥2F (13)

such that k(s)
ij < k(s)

ij,max

which formulates that a minimum cost is found when the
final trait distribution corresponds to the desired trait dis-

tribution, subject to maximum transition rates k
(s)
ij,max. The

notation x
(s)
0 is shorthand for x(s)(0). The operator ∥ · ∥F

denotes the Frobenius norm of a matrix. There is no closed-
form solution to the optimization problem in Eq. 13, but we
can use the derivatives of J (1) with respect to the parameters
to perform gradient descent. To maximize the efficiency of
our optimization function, we compute an analytical gradient.
By applying the chain rule, the derivative of our objective
function with respect to the transition matrix K(s) is

∂J (1)

∂K(s)
=

∂J (1)

∂eK(s)τ
·
∂eK

(s)τ

∂K(s)τ
·
∂K(s)τ

∂K(s)
(14)

We first compute the derivative of the cost with respect to

the expression eK
(s)τ

∂J (1)

∂eK(s)τ
= −2E ·

[

x
(s)
0 · q(s)

]⊤
(15)

The derivation of the 2nd element of Eq.14 requires the
derivative of the matrix exponential. Computing the deriva-
tive of the matrix exponential is not trivial. We adapt the
closed-form solution given in [10] to our problem, and write
the gradient of our cost function as

∂J (1)

∂K(s)
= V−1⊤

[

V⊤ ∂J (1)

∂eK(s)τ
V−1⊤

⊙W(τ)

]

V⊤τ (16)

where ⊙ is the Hadamard product, K(s) = VDV−1 is
the eigendecomposition of K(s). V is the M × M matrix
whose jth column is a right eigenvector corresponding to
eigenvalue di, and D = diag(d1, . . . , dM). The matrix W(t)
is composed as follows 1

W(t) =

{

(edit − edjt)/(dit− djt) i ̸= j
edit i = j

B. Optimization of Convergence Time

The cost function in Eq. 13 does not consider the conver-
gence time τ as a variable. By adding a term that penalizes
high convergence time values, we can compute transition
rates that explicitly optimize convergence time. The modified
objective function is

minimize J (2) = J (1) + ατ 2 (17)

such that k(s)
ij < k(s)

ij,max and τ > 0,

and α > 0. By increasing α, we increase the importance of
the convergence time (by penalizing high values of τ). The
derivative with respect to the transition rates is

1Here, we assume that that K(s) has M distinct eigenvalues. If this is
not the case, an analogous decomposition of K(s) to Jordan canonical form
is possible, as elaborated in [10]. We note that for most models of interest,
however, this is rarely the case.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2016 IEEE International Conference on

Robotics and Automation. Received September 15, 2015.

Indeed, the rank of Q (which must be ≤ S) quantifies the
number of independent species in Q that span the solution
space of the equation X⋆Q = Y⋆ (with X⋆ unknown):

• If rank(Q) < S, the system is underdetermined, and
an infinite number of solutions X⋆ will satisfy Eq. 9.
In other words, at least one species in the system can
be replaced by a combination of the other species. As
the rank decreases, the redundancy of the community
increases.

• If rank(Q) = S, there is only one solution X⋆ that
satisfies Eq. 9. In other words, no species in the system
can be replaced by a combination of the other species,
and all species are fully complementary.

As an example, consider matrix

Q =

⎡

⎣

1 0 0
0 1 1
1 1 1

⎤

⎦ = A · Q̂ =

⎡

⎣

1 0
0 1
1 1

⎤

⎦ ·

[

1 0 0
0 1 1

]

.

The rank of Q is 2, hence, D(Q) = 2, which is the number
of independent species.

IV. METHODOLOGY

In this section, we describe our methodology for obtaining
an optimal transition matrix K(s)⋆ for each species so
that the desired trait distribution is reached. Two general
approaches have been considered so far [4]: convex opti-
mization and stochastic optimization. The convex optimiza-
tion approach requires knowledge of the desired final robot
distribution. However, our problem formulation specifies a
desired trait distribution Y⋆ without explicit definition of
the final robot distribution X⋆. Fully stochastic schemes
such as Metropolis optimization have been shown to produce
similar results, but they are not computationally efficient,
and are ill-suited to real-time applications. In the following,
we present a differentiable objective function that can be
efficiently minimized through gradient descent techniques.
Our method explicitly minimizes the convergence time of
K(s), unlike the convex optimization methods presented
in [4], which approximate K(s) with a symmetric equivalent
(forcing bidirectionally equal transition rates between sites).
Additionally, it is able to find optimal transition rates with
knowledge of Y⋆ and X(0) only (i.e., without knowledge
of X⋆).

A. Design of Optimal Transition Rates

We combine the solution of the linear ordinary differential
equation, Eq. 3, with Eq. 1 to obtain the solution:

Y(t) =
S
∑

s=1

eK
(s)⋆t

x
(s)
0 · q(s) (11)

To find the values of K(s)⋆, we consider the error

E = Y
⋆ −

S
∑

s=1

eK
(s)⋆τ

x
(s)
0 · q(s) (12)

where τ is the time at which the desired state is reached,
and formulate our optimization problem as

minimize J (1) = ∥E ∥2F (13)

such that k(s)
ij < k(s)

ij,max

which formulates that a minimum cost is found when the
final trait distribution corresponds to the desired trait dis-

tribution, subject to maximum transition rates k
(s)
ij,max. The

notation x
(s)
0 is shorthand for x(s)(0). The operator ∥ · ∥F

denotes the Frobenius norm of a matrix. There is no closed-
form solution to the optimization problem in Eq. 13, but we
can use the derivatives of J (1) with respect to the parameters
to perform gradient descent. To maximize the efficiency of
our optimization function, we compute an analytical gradient.
By applying the chain rule, the derivative of our objective
function with respect to the transition matrix K(s) is

∂J (1)

∂K(s)
=

∂J (1)

∂eK(s)τ
·
∂eK

(s)τ

∂K(s)τ
·
∂K(s)τ

∂K(s)
(14)

We first compute the derivative of the cost with respect to

the expression eK
(s)τ

∂J (1)

∂eK(s)τ
= −2E ·

[

x
(s)
0 · q(s)

]⊤
(15)

The derivation of the 2nd element of Eq.14 requires the
derivative of the matrix exponential. Computing the deriva-
tive of the matrix exponential is not trivial. We adapt the
closed-form solution given in [10] to our problem, and write
the gradient of our cost function as

∂J (1)

∂K(s)
= V−1⊤

[

V⊤ ∂J (1)

∂eK(s)τ
V−1⊤

⊙W(τ)

]

V⊤τ (16)

where ⊙ is the Hadamard product, K(s) = VDV−1 is
the eigendecomposition of K(s). V is the M × M matrix
whose jth column is a right eigenvector corresponding to
eigenvalue di, and D = diag(d1, . . . , dM). The matrix W(t)
is composed as follows 1

W(t) =

{

(edit − edjt)/(dit− djt) i ̸= j
edit i = j

B. Optimization of Convergence Time

The cost function in Eq. 13 does not consider the conver-
gence time τ as a variable. By adding a term that penalizes
high convergence time values, we can compute transition
rates that explicitly optimize convergence time. The modified
objective function is

minimize J (2) = J (1) + ατ 2 (17)

such that k(s)
ij < k(s)

ij,max and τ > 0,

and α > 0. By increasing α, we increase the importance of
the convergence time (by penalizing high values of τ). The
derivative with respect to the transition rates is

1Here, we assume that that K(s) has M distinct eigenvalues. If this is
not the case, an analogous decomposition of K(s) to Jordan canonical form
is possible, as elaborated in [10]. We note that for most models of interest,
however, this is rarely the case.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2016 IEEE International Conference on

Robotics and Automation. Received September 15, 2015.

— error in trait distribution

— basic optimization problem

Indeed, the rank of Q (which must be ≤ S) quantifies the
number of independent species in Q that span the solution
space of the equation X⋆Q = Y⋆ (with X⋆ unknown):

• If rank(Q) < S, the system is underdetermined, and
an infinite number of solutions X⋆ will satisfy Eq. 9.
In other words, at least one species in the system can
be replaced by a combination of the other species. As
the rank decreases, the redundancy of the community
increases.

• If rank(Q) = S, there is only one solution X⋆ that
satisfies Eq. 9. In other words, no species in the system
can be replaced by a combination of the other species,
and all species are fully complementary.

As an example, consider matrix

Q =

⎡

⎣

1 0 0
0 1 1
1 1 1

⎤

⎦ = A · Q̂ =

⎡

⎣

1 0
0 1
1 1

⎤

⎦ ·

[

1 0 0
0 1 1

]

.

The rank of Q is 2, hence, D(Q) = 2, which is the number
of independent species.

IV. METHODOLOGY

In this section, we describe our methodology for obtaining
an optimal transition matrix K(s)⋆ for each species so
that the desired trait distribution is reached. Two general
approaches have been considered so far [4]: convex opti-
mization and stochastic optimization. The convex optimiza-
tion approach requires knowledge of the desired final robot
distribution. However, our problem formulation specifies a
desired trait distribution Y⋆ without explicit definition of
the final robot distribution X⋆. Fully stochastic schemes
such as Metropolis optimization have been shown to produce
similar results, but they are not computationally efficient,
and are ill-suited to real-time applications. In the following,
we present a differentiable objective function that can be
efficiently minimized through gradient descent techniques.
Our method explicitly minimizes the convergence time of
K(s), unlike the convex optimization methods presented
in [4], which approximate K(s) with a symmetric equivalent
(forcing bidirectionally equal transition rates between sites).
Additionally, it is able to find optimal transition rates with
knowledge of Y⋆ and X(0) only (i.e., without knowledge
of X⋆).

A. Design of Optimal Transition Rates

We combine the solution of the linear ordinary differential
equation, Eq. 3, with Eq. 1 to obtain the solution:

Y(t) =
S
∑

s=1

eK
(s)⋆t

x
(s)
0 · q(s) (11)

To find the values of K(s)⋆, we consider the error

E = Y
⋆ −

S
∑

s=1

eK
(s)⋆τ

x
(s)
0 · q(s) (12)

where τ is the time at which the desired state is reached,
and formulate our optimization problem as

minimize J (1) = ∥E ∥2F (13)

such that k(s)
ij < k(s)

ij,max

which formulates that a minimum cost is found when the
final trait distribution corresponds to the desired trait dis-

tribution, subject to maximum transition rates k
(s)
ij,max. The

notation x
(s)
0 is shorthand for x(s)(0). The operator ∥ · ∥F

denotes the Frobenius norm of a matrix. There is no closed-
form solution to the optimization problem in Eq. 13, but we
can use the derivatives of J (1) with respect to the parameters
to perform gradient descent. To maximize the efficiency of
our optimization function, we compute an analytical gradient.
By applying the chain rule, the derivative of our objective
function with respect to the transition matrix K(s) is

∂J (1)

∂K(s)
=

∂J (1)

∂eK(s)τ
·
∂eK

(s)τ

∂K(s)τ
·
∂K(s)τ

∂K(s)
(14)

We first compute the derivative of the cost with respect to

the expression eK
(s)τ

∂J (1)

∂eK(s)τ
= −2E ·

[

x
(s)
0 · q(s)

]⊤
(15)

The derivation of the 2nd element of Eq.14 requires the
derivative of the matrix exponential. Computing the deriva-
tive of the matrix exponential is not trivial. We adapt the
closed-form solution given in [10] to our problem, and write
the gradient of our cost function as

∂J (1)

∂K(s)
= V−1⊤

[

V⊤ ∂J (1)

∂eK(s)τ
V−1⊤

⊙W(τ)

]

V⊤τ (16)

where ⊙ is the Hadamard product, K(s) = VDV−1 is
the eigendecomposition of K(s). V is the M × M matrix
whose jth column is a right eigenvector corresponding to
eigenvalue di, and D = diag(d1, . . . , dM). The matrix W(t)
is composed as follows 1

W(t) =

{

(edit − edjt)/(dit− djt) i ̸= j
edit i = j

B. Optimization of Convergence Time

The cost function in Eq. 13 does not consider the conver-
gence time τ as a variable. By adding a term that penalizes
high convergence time values, we can compute transition
rates that explicitly optimize convergence time. The modified
objective function is

minimize J (2) = J (1) + ατ 2 (17)

such that k(s)
ij < k(s)

ij,max and τ > 0,

and α > 0. By increasing α, we increase the importance of
the convergence time (by penalizing high values of τ). The
derivative with respect to the transition rates is

1Here, we assume that that K(s) has M distinct eigenvalues. If this is
not the case, an analogous decomposition of K(s) to Jordan canonical form
is possible, as elaborated in [10]. We note that for most models of interest,
however, this is rarely the case.

Indeed, the rank of Q (which must be ≤ S) quantifies the
number of independent species in Q that span the solution
space of the equation X⋆Q = Y⋆ (with X⋆ unknown):

• If rank(Q) < S, the system is underdetermined, and
an infinite number of solutions X⋆ will satisfy Eq. 9.
In other words, at least one species in the system can
be replaced by a combination of the other species. As
the rank decreases, the redundancy of the community
increases.

• If rank(Q) = S, there is only one solution X⋆ that
satisfies Eq. 9. In other words, no species in the system
can be replaced by a combination of the other species,
and all species are fully complementary.

As an example, consider matrix

Q =

⎡

⎣

1 0 0
0 1 1
1 1 1

⎤

⎦ = A · Q̂ =

⎡

⎣

1 0
0 1
1 1

⎤

⎦ ·

[

1 0 0
0 1 1

]

.

The rank of Q is 2, hence, D(Q) = 2, which is the number
of independent species.

IV. METHODOLOGY

In this section, we describe our methodology for obtaining
an optimal transition matrix K(s)⋆ for each species so
that the desired trait distribution is reached. Two general
approaches have been considered so far [4]: convex opti-
mization and stochastic optimization. The convex optimiza-
tion approach requires knowledge of the desired final robot
distribution. However, our problem formulation specifies a
desired trait distribution Y⋆ without explicit definition of
the final robot distribution X⋆. Fully stochastic schemes
such as Metropolis optimization have been shown to produce
similar results, but they are not computationally efficient,
and are ill-suited to real-time applications. In the following,
we present a differentiable objective function that can be
efficiently minimized through gradient descent techniques.
Our method explicitly minimizes the convergence time of
K(s), unlike the convex optimization methods presented
in [4], which approximate K(s) with a symmetric equivalent
(forcing bidirectionally equal transition rates between sites).
Additionally, it is able to find optimal transition rates with
knowledge of Y⋆ and X(0) only (i.e., without knowledge
of X⋆).

A. Design of Optimal Transition Rates

We combine the solution of the linear ordinary differential
equation, Eq. 3, with Eq. 1 to obtain the solution:

Y(t) =
S
∑

s=1

eK
(s)⋆t

x
(s)
0 · q(s) (11)

To find the values of K(s)⋆, we consider the error

E = Y
⋆ −

S
∑

s=1

eK
(s)⋆τ

x
(s)
0 · q(s) (12)

where τ is the time at which the desired state is reached,
and formulate our optimization problem as

minimize J (1) = ∥E ∥2F (13)

such that k(s)
ij < k(s)

ij,max

which formulates that a minimum cost is found when the
final trait distribution corresponds to the desired trait dis-

tribution, subject to maximum transition rates k
(s)
ij,max. The

notation x
(s)
0 is shorthand for x(s)(0). The operator ∥ · ∥F

denotes the Frobenius norm of a matrix. There is no closed-
form solution to the optimization problem in Eq. 13, but we
can use the derivatives of J (1) with respect to the parameters
to perform gradient descent. To maximize the efficiency of
our optimization function, we compute an analytical gradient.
By applying the chain rule, the derivative of our objective
function with respect to the transition matrix K(s) is

∂J (1)

∂K(s)
=

∂J (1)

∂eK(s)τ
·
∂eK

(s)τ

∂K(s)τ
·
∂K(s)τ

∂K(s)
(14)

We first compute the derivative of the cost with respect to

the expression eK
(s)τ

∂J (1)

∂eK(s)τ
= −2E ·

[

x
(s)
0 · q(s)

]⊤
(15)

The derivation of the 2nd element of Eq.14 requires the
derivative of the matrix exponential. Computing the deriva-
tive of the matrix exponential is not trivial. We adapt the
closed-form solution given in [10] to our problem, and write
the gradient of our cost function as

∂J (1)

∂K(s)
= V−1⊤

[

V⊤ ∂J (1)

∂eK(s)τ
V−1⊤

⊙W(τ)

]

V⊤τ (16)

where ⊙ is the Hadamard product, K(s) = VDV−1 is
the eigendecomposition of K(s). V is the M × M matrix
whose jth column is a right eigenvector corresponding to
eigenvalue di, and D = diag(d1, . . . , dM). The matrix W(t)
is composed as follows 1

W(t) =

{

(edit − edjt)/(dit− djt) i ̸= j
edit i = j

B. Optimization of Convergence Time

The cost function in Eq. 13 does not consider the conver-
gence time τ as a variable. By adding a term that penalizes
high convergence time values, we can compute transition
rates that explicitly optimize convergence time. The modified
objective function is

minimize J (2) = J (1) + ατ 2 (17)

such that k(s)
ij < k(s)

ij,max and τ > 0,

and α > 0. By increasing α, we increase the importance of
the convergence time (by penalizing high values of τ). The
derivative with respect to the transition rates is

1Here, we assume that that K(s) has M distinct eigenvalues. If this is
not the case, an analogous decomposition of K(s) to Jordan canonical form
is possible, as elaborated in [10]. We note that for most models of interest,
however, this is rarely the case.

— explicit opt. of convergence time

— reinforcing steady-state

1.

2.

3. minimize J (3) = J (2) + �
PS

s=1

���eK
(s)⌧

x

(s)
0 � eK

(s)(⌧+⌫)
x

(s)
0

���
2

2

Example
Algorithm 1 Robot Controller(K(s), ∆T)

1: P(s) = eK
(s)∆T

2: while 1 do
3: m ∼ P(p(s)i1 , . . . , p(s)iM)
4: if m ̸= i then
5: Switch to task m
6: i← m
7: end if
8: Wait ∆T
9: end while

4. RESULTS
Previous work has shown the benefit of validating meth-
ods over multiple, complementary levels of abstraction (sub-
microscopic, microscopic, and macroscopic) [14]. In the
present work, we propose an evaluation of our methods on
two levels: microscopic and macroscopic. Indeed, the most
efficient way of simulating the swarm of robots is by con-
sidering a continuous macroscopic model, derived directly
from the ordinary differential equation, Eq. 3. In order to
validate the methods at a lower level of abstraction, we also
implement a discrete microscopic model that emulates the
behavior of individual robot controllers. Running multiple
iterations of the microscopic model enables us to capture the
stochasticity resulting from our control system.

Our performance metric considers the degree of convergence
to Ȳ, expressed by the fraction of misplaced traits

µ(Y) =
∥(Y − Ȳ)∥1

2∥Y∥1
(30)

We say that one system converges faster than another if it
takes less time for µ(Y) to decrease to some relative error
µthresh, such as µthresh = 2.5%. Similar performance metrics
have been proposed in [2, 6, 8].

We will consider two optimization methods, one that stems
from this paper, and one that stems from [2]:

Explicit We consider the optimization problem posed in
Eq. 29 that explicitly optimizes convergence time, with
α = 1, β = 5, and ν = 2, producing a fixed K(s)⋆ for
each species.

Implicit We adapt the convex optimization method pre-
sented in [2], denoted in the latter work as [P1]. This
adapted method implicitly optimizes the convergence
time by optimizing the asymptotic convergence rate (of
a system of homogenous robots). In order to do this,
we minimize the second eigenvalue λ2 of a symmet-
ric matrix S(s), such that λ2(S(s)) ≥ Re(λ2(K(s))).
Since this method requires the knowledge of the de-
sired species distribution X̄, we artificially bootstrap
the method by computing a random instantiation of
X̄ that satisfies the desired trait distribution defined
by Eq. 8. We note that in practical applications, com-
puting a good instantiation of X̄ is not trivial. We
choose this method because it is comparable to ours,
and is to-date one of the most efficient methods that
optimizes the convergence time of such systems.

1

2
3

4

5

6
7

8

(a) (b)

Figure 1: A strongly connected instance of a graph
with 8 tasks (nodes), and possibilities of switching
between tasks (edges). The system includes 4 traits.
The trait abundance is represented by a bar plot. (a)
Initial distribution (b) Desired distribution.

4.1 Example
To illustrate our method, we consider an example of N =
800 robots switching between M = 8 tasks. We sample
a random initial robot distribution X(0) with robots dis-
tributed among three tasks, and generate a random, feasible
desired trait distribution Ȳ with robots distributed among
the remaining five tasks. The initial trait distribution is vi-
sualized in Fig. 1(a), and the desired trait distribution is
visualized in Fig. 1(b). The graph is generated randomly
according to the Watts-Strogatz model [22] (with a neigh-
boring node degree of K = 3, and a rewiring probability of
γ = 0.6; the graph is guaranteed to be connected). We set

k(s)
ij,max = 1 s−1 for all edges. The robot community consists

of 3 species and 4 traits, and is defined as follows:

Q =

⎡

⎣

1 0 1 0
1 0 0 1
0 1 0 1

⎤

⎦

with

X⊤ · 1 = [231, 312, 257]⊤ (31)

We solve the system for Ȳ as shown in Fig. 1(b). We show
the evolution of the trait distribution in Fig. 2. The plots
qualitatively show how the desired distribution is reached
for each trait. Fig. 3 shows the ratio of misplaced traits
µ(Y) over time for the initial and desired trait distributions
depicted in Fig. 1. We run 100 iterations of the discrete mi-
croscopic model with method Explicit. The plot shows that
our solution reaches the desired trait distribution, and that
the trait error decreases exponentially. Initially, the micro-
scopic and macroscopic models show good agreement, up to
about t = 5 seconds. Afterwards, the stochasticity of the mi-
croscopic model forces the error ratio (which counts absolute
differences) to be larger than 0. Note that the latter result
depends on the noise intensity, and hence, the dynamics of
the system. Systems with slower dynamics achieve lower
average errors at steady-state.

4.2 Comparison of Methods
We compare the two optimization methods, Explicit, and
Implicit, and evaluate their performance with respect to
the metric in Eq. 30. We instantiate 40 random graphs
with M = 6 nodes, and random matrices Q with S = 4
species and U = 4 traits, and generate random desired trait

initial target

Time [s]

D
is
tr
ib
.
of

tr
ai
t
1

(a)

1

2

3

4

5

6

7

8

Time [s]

D
is
tr
ib
.
of

tr
ai
t
2

(b)

Time [s]

D
is
tr
ib
.
of

tr
ai
t
3

(c)

Time [s]

D
is
tr
ib
.
of

tr
ai
t
4

(d)

Figure 2: Evolution over time of the trait distribu-
tion as specified by the distributions shown in Fig. 1.
Each subplot represents one trait, indicating the dis-
tribution of that trait over the set of tasks (task 1
is shown at the bottom and task 8 at the top).

distributions Ȳ for each graph. We set k(s)
ij,max = 2 s−1 for

all edges. The microscopic model is iterated 4 times on each
graph instantiation. For the method Implicit, we compute
a random robot distribution X̄ that satisfies the desired trait
distribution. We measure the time tµ,thresh at which the
system converges to a value µthresh = 2.5% of misplaced
traits.

Fig. 4 shows the results. The median of Explicit is able
to improve upon the median of Implicit by 21%. This
result is expected, as our method explicitly minimizes the
convergence time of the actual system (rather than maxi-
mizing the asymptotic convergence rate of an approximated
system). Also, we note that the spread of values between
the 25th and 75th percentiles is 43% smaller for Explicit,
showing that our method is more robust to different initial
conditions. Finally, we compute the error obtained through
method Explicit by comparing the analytical steady-state
distribution of traits (obtained by taking the eigenvectors
that correspond to the zero-eigenvalues of each rate matrix
K(s) and multiplying them by Q) with the desired trait dis-
tribution Ȳ. The median, 90th percentile and maximum
error from the steady-state to the desired trait distribution
are 0.108%, 0.572% and 0.812%, respectively. These results
demonstrate that, despite the fact that our method is not ex-
plicitly optimizing for the steady-state, it reaches a steady-
state error smaller than system noise (at steady-state).

µ
(Y

)

Time [s]

Microscopic
Macroscopic

Figure 3: Ratio of misplaced traits over time for
the initial and desired trait distributions depicted
in Fig. 1. The simulation was run with 800 robots.
The plot shows the macroscopic model as well as the
average over 100 iterations of the microscopic model.
The shaded area shows the standard deviation.

t µ
,t
h
re

sh
[s
]

Implicit Explicit

Figure 4: The plot shows the convergence time for
the optimization methods, evaluated on the micro-
scopic model, with tµthresh for µthresh = 2.5%, for 40
random graphs with M = 6 and random matrices Q
with 4 species and 4 traits. The boxplots show the
median and the 25th and 75th percentiles.

5. CONCLUSION
We present a method that distributes a swarm of heteroge-
neous robots among a set of tasks with the goal of satisfy-
ing a desired distribution of robot capabilities among those
tasks. We propose a formulation for heterogeneous robot
systems through species and traits, and show how this for-
mulation is used to achieve an optimal distribution of robots
by specifying the desired final trait configuration. To find
the optimal transition rates, we pose an optimization prob-
lem, and develop a solution based on an analytical gradient
that is computationally efficient and capable of producing
fast convergence times, even for large choices of traits and
species. Indeed, the gradient computation is fully scalable
with respect to the number of robots, number of species
and number of traits. We validate our approach on random
graph instantiations, and show that our baseline method
outperforms a classical alternative approach. We believe
that this method is well-suited to applications that control
large-scale teams of robots that need to converge quickly to
desired configurations as a function of their capabilities.

Time [s]

D
is
tr
ib
.
of

tr
ai
t
1

(a)

1

2

3

4

5

6

7

8

Time [s]

D
is
tr
ib
.
of

tr
ai
t
2

(b)

Time [s]

D
is
tr
ib
.
of

tr
ai
t
3

(c)

Time [s]

D
is
tr
ib
.
of

tr
ai
t
4

(d)

Figure 2: Evolution over time of the trait distribu-
tion as specified by the distributions shown in Fig. 1.
Each subplot represents one trait, indicating the dis-
tribution of that trait over the set of tasks (task 1
is shown at the bottom and task 8 at the top).

distributions Ȳ for each graph. We set k(s)
ij,max = 2 s−1 for

all edges. The microscopic model is iterated 4 times on each
graph instantiation. For the method Implicit, we compute
a random robot distribution X̄ that satisfies the desired trait
distribution. We measure the time tµ,thresh at which the
system converges to a value µthresh = 2.5% of misplaced
traits.

Fig. 4 shows the results. The median of Explicit is able
to improve upon the median of Implicit by 21%. This
result is expected, as our method explicitly minimizes the
convergence time of the actual system (rather than maxi-
mizing the asymptotic convergence rate of an approximated
system). Also, we note that the spread of values between
the 25th and 75th percentiles is 43% smaller for Explicit,
showing that our method is more robust to different initial
conditions. Finally, we compute the error obtained through
method Explicit by comparing the analytical steady-state
distribution of traits (obtained by taking the eigenvectors
that correspond to the zero-eigenvalues of each rate matrix
K(s) and multiplying them by Q) with the desired trait dis-
tribution Ȳ. The median, 90th percentile and maximum
error from the steady-state to the desired trait distribution
are 0.108%, 0.572% and 0.812%, respectively. These results
demonstrate that, despite the fact that our method is not ex-
plicitly optimizing for the steady-state, it reaches a steady-
state error smaller than system noise (at steady-state).

µ
(Y

)

Time [s]

Microscopic
Macroscopic

Figure 3: Ratio of misplaced traits over time for
the initial and desired trait distributions depicted
in Fig. 1. The simulation was run with 800 robots.
The plot shows the macroscopic model as well as the
average over 100 iterations of the microscopic model.
The shaded area shows the standard deviation.

t µ
,t
h
re

sh
[s
]

Implicit Explicit

Figure 4: The plot shows the convergence time for
the optimization methods, evaluated on the micro-
scopic model, with tµthresh for µthresh = 2.5%, for 40
random graphs with M = 6 and random matrices Q
with 4 species and 4 traits. The boxplots show the
median and the 25th and 75th percentiles.

5. CONCLUSION
We present a method that distributes a swarm of heteroge-
neous robots among a set of tasks with the goal of satisfy-
ing a desired distribution of robot capabilities among those
tasks. We propose a formulation for heterogeneous robot
systems through species and traits, and show how this for-
mulation is used to achieve an optimal distribution of robots
by specifying the desired final trait configuration. To find
the optimal transition rates, we pose an optimization prob-
lem, and develop a solution based on an analytical gradient
that is computationally efficient and capable of producing
fast convergence times, even for large choices of traits and
species. Indeed, the gradient computation is fully scalable
with respect to the number of robots, number of species
and number of traits. We validate our approach on random
graph instantiations, and show that our baseline method
outperforms a classical alternative approach. We believe
that this method is well-suited to applications that control
large-scale teams of robots that need to converge quickly to
desired configurations as a function of their capabilities.

Time [s]

D
is
tr
ib
.
of

tr
ai
t
1

(a)

1

2

3

4

5

6

7

8

Time [s]

D
is
tr
ib
.
of

tr
ai
t
2

(b)

Time [s]

D
is
tr
ib
.
of

tr
ai
t
3

(c)

Time [s]
D
is
tr
ib
.
of

tr
ai
t
4

(d)

Figure 2: Evolution over time of the trait distribu-
tion as specified by the distributions shown in Fig. 1.
Each subplot represents one trait, indicating the dis-
tribution of that trait over the set of tasks (task 1
is shown at the bottom and task 8 at the top).

distributions Ȳ for each graph. We set k(s)
ij,max = 2 s−1 for

all edges. The microscopic model is iterated 4 times on each
graph instantiation. For the method Implicit, we compute
a random robot distribution X̄ that satisfies the desired trait
distribution. We measure the time tµ,thresh at which the
system converges to a value µthresh = 2.5% of misplaced
traits.

Fig. 4 shows the results. The median of Explicit is able
to improve upon the median of Implicit by 21%. This
result is expected, as our method explicitly minimizes the
convergence time of the actual system (rather than maxi-
mizing the asymptotic convergence rate of an approximated
system). Also, we note that the spread of values between
the 25th and 75th percentiles is 43% smaller for Explicit,
showing that our method is more robust to different initial
conditions. Finally, we compute the error obtained through
method Explicit by comparing the analytical steady-state
distribution of traits (obtained by taking the eigenvectors
that correspond to the zero-eigenvalues of each rate matrix
K(s) and multiplying them by Q) with the desired trait dis-
tribution Ȳ. The median, 90th percentile and maximum
error from the steady-state to the desired trait distribution
are 0.108%, 0.572% and 0.812%, respectively. These results
demonstrate that, despite the fact that our method is not ex-
plicitly optimizing for the steady-state, it reaches a steady-
state error smaller than system noise (at steady-state).

µ
(Y

)

Time [s]

Microscopic
Macroscopic

Figure 3: Ratio of misplaced traits over time for
the initial and desired trait distributions depicted
in Fig. 1. The simulation was run with 800 robots.
The plot shows the macroscopic model as well as the
average over 100 iterations of the microscopic model.
The shaded area shows the standard deviation.

t µ
,t
h
re

sh
[s
]

Implicit Explicit

Figure 4: The plot shows the convergence time for
the optimization methods, evaluated on the micro-
scopic model, with tµthresh for µthresh = 2.5%, for 40
random graphs with M = 6 and random matrices Q
with 4 species and 4 traits. The boxplots show the
median and the 25th and 75th percentiles.

5. CONCLUSION
We present a method that distributes a swarm of heteroge-
neous robots among a set of tasks with the goal of satisfy-
ing a desired distribution of robot capabilities among those
tasks. We propose a formulation for heterogeneous robot
systems through species and traits, and show how this for-
mulation is used to achieve an optimal distribution of robots
by specifying the desired final trait configuration. To find
the optimal transition rates, we pose an optimization prob-
lem, and develop a solution based on an analytical gradient
that is computationally efficient and capable of producing
fast convergence times, even for large choices of traits and
species. Indeed, the gradient computation is fully scalable
with respect to the number of robots, number of species
and number of traits. We validate our approach on random
graph instantiations, and show that our baseline method
outperforms a classical alternative approach. We believe
that this method is well-suited to applications that control
large-scale teams of robots that need to converge quickly to
desired configurations as a function of their capabilities.

Time [s]

D
is
tr
ib
.
of

tr
ai
t
1

(a)

1

2

3

4

5

6

7

8

Time [s]

D
is
tr
ib
.
of

tr
ai
t
2

(b)

Time [s]

D
is
tr
ib
.
of

tr
ai
t
3

(c)

Time [s]

D
is
tr
ib
.
of

tr
ai
t
4

(d)

Figure 2: Evolution over time of the trait distribu-
tion as specified by the distributions shown in Fig. 1.
Each subplot represents one trait, indicating the dis-
tribution of that trait over the set of tasks (task 1
is shown at the bottom and task 8 at the top).

distributions Ȳ for each graph. We set k(s)
ij,max = 2 s−1 for

all edges. The microscopic model is iterated 4 times on each
graph instantiation. For the method Implicit, we compute
a random robot distribution X̄ that satisfies the desired trait
distribution. We measure the time tµ,thresh at which the
system converges to a value µthresh = 2.5% of misplaced
traits.

Fig. 4 shows the results. The median of Explicit is able
to improve upon the median of Implicit by 21%. This
result is expected, as our method explicitly minimizes the
convergence time of the actual system (rather than maxi-
mizing the asymptotic convergence rate of an approximated
system). Also, we note that the spread of values between
the 25th and 75th percentiles is 43% smaller for Explicit,
showing that our method is more robust to different initial
conditions. Finally, we compute the error obtained through
method Explicit by comparing the analytical steady-state
distribution of traits (obtained by taking the eigenvectors
that correspond to the zero-eigenvalues of each rate matrix
K(s) and multiplying them by Q) with the desired trait dis-
tribution Ȳ. The median, 90th percentile and maximum
error from the steady-state to the desired trait distribution
are 0.108%, 0.572% and 0.812%, respectively. These results
demonstrate that, despite the fact that our method is not ex-
plicitly optimizing for the steady-state, it reaches a steady-
state error smaller than system noise (at steady-state).

µ
(Y

)

Time [s]

Microscopic
Macroscopic

Figure 3: Ratio of misplaced traits over time for
the initial and desired trait distributions depicted
in Fig. 1. The simulation was run with 800 robots.
The plot shows the macroscopic model as well as the
average over 100 iterations of the microscopic model.
The shaded area shows the standard deviation.

t µ
,t
h
re

sh
[s
]

Implicit Explicit

Figure 4: The plot shows the convergence time for
the optimization methods, evaluated on the micro-
scopic model, with tµthresh for µthresh = 2.5%, for 40
random graphs with M = 6 and random matrices Q
with 4 species and 4 traits. The boxplots show the
median and the 25th and 75th percentiles.

5. CONCLUSION
We present a method that distributes a swarm of heteroge-
neous robots among a set of tasks with the goal of satisfy-
ing a desired distribution of robot capabilities among those
tasks. We propose a formulation for heterogeneous robot
systems through species and traits, and show how this for-
mulation is used to achieve an optimal distribution of robots
by specifying the desired final trait configuration. To find
the optimal transition rates, we pose an optimization prob-
lem, and develop a solution based on an analytical gradient
that is computationally efficient and capable of producing
fast convergence times, even for large choices of traits and
species. Indeed, the gradient computation is fully scalable
with respect to the number of robots, number of species
and number of traits. We validate our approach on random
graph instantiations, and show that our baseline method
outperforms a classical alternative approach. We believe
that this method is well-suited to applications that control
large-scale teams of robots that need to converge quickly to
desired configurations as a function of their capabilities.

trait 1 trait 2 trait 3 trait 4

Experiment

initial target

* Work submitted to ICRA 2016

Movie

submitted to ICRA 2016

Continuous Optimization

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

PREPRINT 2015-08-31

vol. 00 no. 0/0000 Adaptive Distribution of a Swarm of Heterogeneous Robots

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

For all above cost functions, z = 1, 2, 3, the derivative
with respect to the off-diagonal elements ij of the
matrix K(s), with (i, j) ∈ E , is

∂J (z)

∂K(s)
ij

=

{

∂J (z)

∂K(s)

}

ij

−

{

∂J (z)

∂K(s)

}

jj

(25)

where {·}ij denotes the element on row i and column
j. The derivative with respect to time τ is analogous.
Finally, we summarize our optimization problem as
follows:

K(s)⋆, τ⋆ = argmin
K(s),τ

J (3), (26)

under the constraints shown in Eq. 18. To solve
the system, we implement a basin-hopping optimiza-
tion algorithm [17], which attempts to find the global
minimum of a smooth scalar function. Locally, our
basin-hopping algorithm uses a quasi-Newton method
(namely, the Broyden-Fletcher-Goldfarb-Shanno algo-
rithm [18] with bound constraints).

3.3. Computational Complexity
The computational complexity of computing the gra-
dient of our objective function is O(S · M3 + S · M2 ·
U). The first part of this complexity is dictated by
the eigenvalue decomposition, which is known to be
O(M3) for non-sparse matrices [19]2. We compute
this decomposition only once per optimization (see
Eq. 12, where K(s) = VDV−1), for each optimization
of K(s). The second part is dictated by the multipli-
cation of the matrices in Eq. 12, for which the cost is
O(M2 ·U). Globally speaking, the computation grows
linearly with the number of species and traits, and it
grows cubically with respect to the number of tasks.
Overall, for the results shown in Section 4, the aver-
age time to compute the gradient for a system with
M = 8, U = 4, and S = 4 is around 1.35 ms with
ν = 0, and 2.2 ms with ν > 0 (the number of param-
eters to optimize can be as large as 225 in this case,
depending on the graph’s adjacency matrix). The
code was implemented in Python using the NumPy
and SciPy libraries, and tested on a 2 GHz Intel Core
i7 using a single CPU.

3.4. Continuous Optimization of K(s)

As shown above, the optimization of the objective
function J (3) is efficient and can be performed in
real-time. Building on this result, we can implement
a continuous, online optimization strategy that al-
lows us to refine the optimal K(s)⋆ as a function of
the current state. In noisy systems, where the tra-
jectories of individual agents exhibit deviations from
predicted macroscopic trajectories, this strategy in-
evitably leads to an improvement of the convergence
time. By taking the actual robot distribution into ac-
count, it can recompute updated optimal transition

2In the special case where all eigenvalues are dis-
tinct, the eigenvalue decomposition can be reduced to
O(M2.376 log(M)) [20].

rates. Practically, we initially compute K(s)⋆ at time
t = 0 to control the system over a finite period δ from
t = 0 to t = δ. After that period (at time t = δ), we
optimize a new value of K(s)⋆ that controls the sys-
tem for the next period, as a function of the actual
robot distribution that was encountered at time t = δ.
This process can be repeated indefinitely. The value
δ is called the sampling time. Formally, we write our
control policy as

K(s)⋆(t), τ⋆(t) = argmin
K(s),τ

J̃ (3)(X(tp)) (27)

with tp ≤ t < tp + δ

tp ∈ kδ, k ∈ N,

where we rewrite our cost equation as a function of
the robot distribution

J̃ (3)(X) =

∥

∥

∥

∥

∥

Ȳ −
S

∑

s=1

eK
(s)τ x(s) · q(s)

∥

∥

∥

∥

∥

2

F

(28)

+ ατ2

+ β
S

∑

s=1

∥

∥

∥
eK

(s)τ x(s) − eK
(s)(τ+ν)x(s)

∥

∥

∥

2

2

Note that J̃ (3)(X(0)) is equal to J (3). In practice, if
δ is small with respect to the rates at which robots
transition between sites (cf. kij,max), we set β = 0,
since the continuous optimization of K(s) enforces a
current state that is close to the desired state, irre-
spective of the steady-state distribution. For cases
where the optimization time becomes large (imply-
ing that δ also becomes large), we either need to set
β > 0, or use a strategy that accounts for compu-
tation delay, such as those presented in [21]. Also,
we note that we can accelerate the computations by
setting the initial values of the present sampling win-
dow with optimized values of the preceding sampling
window (i.e., warm start).

4. Results
Previous work has shown the benefit of validating
methods over multiple, complementary levels of ab-
straction (sub-microscopic, microscopic, and macro-
scopic) [22]. In the present work, we propose an
evaluation of our methods on two levels: microscopic
and macroscopic. Indeed, the most efficient way of
simulating the swarm of robots is by considering a
continuous macroscopic model, derived directly from
the ordinary differential equation, Eq. 3. In order
to validate the control policy at a lower level of ab-
straction, we also implement a discrete microscopic
model that emulates the behavior of individual robot
controllers. This agent-level control is based on the

transition rates k(s)
ij encoded by the transition matrix

K(s): A robot of species s at site i transitions to site

j according to probability p(s)
ij that is an element of

the matrix P(s) = eK
(s)∆T , where ∆T is the duration

5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

PREPRINT 2015-08-31

vol. 00 no. 0/0000 Adaptive Distribution of a Swarm of Heterogeneous Robots

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

For all above cost functions, z = 1, 2, 3, the derivative
with respect to the off-diagonal elements ij of the
matrix K(s), with (i, j) ∈ E , is

∂J (z)

∂K(s)
ij

=

{

∂J (z)

∂K(s)

}

ij

−

{

∂J (z)

∂K(s)

}

jj

(25)

where {·}ij denotes the element on row i and column
j. The derivative with respect to time τ is analogous.
Finally, we summarize our optimization problem as
follows:

K(s)⋆, τ⋆ = argmin
K(s),τ

J (3), (26)

under the constraints shown in Eq. 18. To solve
the system, we implement a basin-hopping optimiza-
tion algorithm [17], which attempts to find the global
minimum of a smooth scalar function. Locally, our
basin-hopping algorithm uses a quasi-Newton method
(namely, the Broyden-Fletcher-Goldfarb-Shanno algo-
rithm [18] with bound constraints).

3.3. Computational Complexity
The computational complexity of computing the gra-
dient of our objective function is O(S · M3 + S · M2 ·
U). The first part of this complexity is dictated by
the eigenvalue decomposition, which is known to be
O(M3) for non-sparse matrices [19]2. We compute
this decomposition only once per optimization (see
Eq. 12, where K(s) = VDV−1), for each optimization
of K(s). The second part is dictated by the multipli-
cation of the matrices in Eq. 12, for which the cost is
O(M2 ·U). Globally speaking, the computation grows
linearly with the number of species and traits, and it
grows cubically with respect to the number of tasks.
Overall, for the results shown in Section 4, the aver-
age time to compute the gradient for a system with
M = 8, U = 4, and S = 4 is around 1.35 ms with
ν = 0, and 2.2 ms with ν > 0 (the number of param-
eters to optimize can be as large as 225 in this case,
depending on the graph’s adjacency matrix). The
code was implemented in Python using the NumPy
and SciPy libraries, and tested on a 2 GHz Intel Core
i7 using a single CPU.

3.4. Continuous Optimization of K(s)

As shown above, the optimization of the objective
function J (3) is efficient and can be performed in
real-time. Building on this result, we can implement
a continuous, online optimization strategy that al-
lows us to refine the optimal K(s)⋆ as a function of
the current state. In noisy systems, where the tra-
jectories of individual agents exhibit deviations from
predicted macroscopic trajectories, this strategy in-
evitably leads to an improvement of the convergence
time. By taking the actual robot distribution into ac-
count, it can recompute updated optimal transition

2In the special case where all eigenvalues are dis-
tinct, the eigenvalue decomposition can be reduced to
O(M2.376 log(M)) [20].

rates. Practically, we initially compute K(s)⋆ at time
t = 0 to control the system over a finite period δ from
t = 0 to t = δ. After that period (at time t = δ), we
optimize a new value of K(s)⋆ that controls the sys-
tem for the next period, as a function of the actual
robot distribution that was encountered at time t = δ.
This process can be repeated indefinitely. The value
δ is called the sampling time. Formally, we write our
control policy as

K(s)⋆(t), τ⋆(t) = argmin
K(s),τ

J̃ (3)(X(tp)) (27)

with tp ≤ t < tp + δ

tp ∈ kδ, k ∈ N,

where we rewrite our cost equation as a function of
the robot distribution

J̃ (3)(X) =

∥

∥

∥

∥

∥

Ȳ −
S

∑

s=1

eK
(s)τ x(s) · q(s)

∥

∥

∥

∥

∥

2

F

(28)

+ ατ2

+ β
S

∑

s=1

∥

∥

∥
eK

(s)τ x(s) − eK
(s)(τ+ν)x(s)

∥

∥

∥

2

2

Note that J̃ (3)(X(0)) is equal to J (3). In practice, if
δ is small with respect to the rates at which robots
transition between sites (cf. kij,max), we set β = 0,
since the continuous optimization of K(s) enforces a
current state that is close to the desired state, irre-
spective of the steady-state distribution. For cases
where the optimization time becomes large (imply-
ing that δ also becomes large), we either need to set
β > 0, or use a strategy that accounts for compu-
tation delay, such as those presented in [21]. Also,
we note that we can accelerate the computations by
setting the initial values of the present sampling win-
dow with optimized values of the preceding sampling
window (i.e., warm start).

4. Results
Previous work has shown the benefit of validating
methods over multiple, complementary levels of ab-
straction (sub-microscopic, microscopic, and macro-
scopic) [22]. In the present work, we propose an
evaluation of our methods on two levels: microscopic
and macroscopic. Indeed, the most efficient way of
simulating the swarm of robots is by considering a
continuous macroscopic model, derived directly from
the ordinary differential equation, Eq. 3. In order
to validate the control policy at a lower level of ab-
straction, we also implement a discrete microscopic
model that emulates the behavior of individual robot
controllers. This agent-level control is based on the

transition rates k(s)
ij encoded by the transition matrix

K(s): A robot of species s at site i transitions to site

j according to probability p(s)
ij that is an element of

the matrix P(s) = eK
(s)∆T , where ∆T is the duration

5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

PREPRINT 2015-08-31

vol. 00 no. 0/0000 Adaptive Distribution of a Swarm of Heterogeneous Robots

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

For all above cost functions, z = 1, 2, 3, the derivative
with respect to the off-diagonal elements ij of the
matrix K(s), with (i, j) ∈ E , is

∂J (z)

∂K(s)
ij

=

{

∂J (z)

∂K(s)

}

ij

−

{

∂J (z)

∂K(s)

}

jj

(25)

where {·}ij denotes the element on row i and column
j. The derivative with respect to time τ is analogous.
Finally, we summarize our optimization problem as
follows:

K(s)⋆, τ⋆ = argmin
K(s),τ

J (3), (26)

under the constraints shown in Eq. 18. To solve
the system, we implement a basin-hopping optimiza-
tion algorithm [17], which attempts to find the global
minimum of a smooth scalar function. Locally, our
basin-hopping algorithm uses a quasi-Newton method
(namely, the Broyden-Fletcher-Goldfarb-Shanno algo-
rithm [18] with bound constraints).

3.3. Computational Complexity
The computational complexity of computing the gra-
dient of our objective function is O(S · M3 + S · M2 ·
U). The first part of this complexity is dictated by
the eigenvalue decomposition, which is known to be
O(M3) for non-sparse matrices [19]2. We compute
this decomposition only once per optimization (see
Eq. 12, where K(s) = VDV−1), for each optimization
of K(s). The second part is dictated by the multipli-
cation of the matrices in Eq. 12, for which the cost is
O(M2 ·U). Globally speaking, the computation grows
linearly with the number of species and traits, and it
grows cubically with respect to the number of tasks.
Overall, for the results shown in Section 4, the aver-
age time to compute the gradient for a system with
M = 8, U = 4, and S = 4 is around 1.35 ms with
ν = 0, and 2.2 ms with ν > 0 (the number of param-
eters to optimize can be as large as 225 in this case,
depending on the graph’s adjacency matrix). The
code was implemented in Python using the NumPy
and SciPy libraries, and tested on a 2 GHz Intel Core
i7 using a single CPU.

3.4. Continuous Optimization of K(s)

As shown above, the optimization of the objective
function J (3) is efficient and can be performed in
real-time. Building on this result, we can implement
a continuous, online optimization strategy that al-
lows us to refine the optimal K(s)⋆ as a function of
the current state. In noisy systems, where the tra-
jectories of individual agents exhibit deviations from
predicted macroscopic trajectories, this strategy in-
evitably leads to an improvement of the convergence
time. By taking the actual robot distribution into ac-
count, it can recompute updated optimal transition

2In the special case where all eigenvalues are dis-
tinct, the eigenvalue decomposition can be reduced to
O(M2.376 log(M)) [20].

rates. Practically, we initially compute K(s)⋆ at time
t = 0 to control the system over a finite period δ from
t = 0 to t = δ. After that period (at time t = δ), we
optimize a new value of K(s)⋆ that controls the sys-
tem for the next period, as a function of the actual
robot distribution that was encountered at time t = δ.
This process can be repeated indefinitely. The value
δ is called the sampling time. Formally, we write our
control policy as

K(s)⋆(t), τ⋆(t) = argmin
K(s),τ

J̃ (3)(X(tp)) (27)

with tp ≤ t < tp + δ

tp ∈ kδ, k ∈ N,

where we rewrite our cost equation as a function of
the robot distribution

J̃ (3)(X) =

∥

∥

∥

∥

∥

Ȳ −
S

∑

s=1

eK
(s)τ x(s) · q(s)

∥

∥

∥

∥

∥

2

F

(28)

+ ατ2

+ β
S

∑

s=1

∥

∥

∥
eK

(s)τ x(s) − eK
(s)(τ+ν)x(s)

∥

∥

∥

2

2

Note that J̃ (3)(X(0)) is equal to J (3). In practice, if
δ is small with respect to the rates at which robots
transition between sites (cf. kij,max), we set β = 0,
since the continuous optimization of K(s) enforces a
current state that is close to the desired state, irre-
spective of the steady-state distribution. For cases
where the optimization time becomes large (imply-
ing that δ also becomes large), we either need to set
β > 0, or use a strategy that accounts for compu-
tation delay, such as those presented in [21]. Also,
we note that we can accelerate the computations by
setting the initial values of the present sampling win-
dow with optimized values of the preceding sampling
window (i.e., warm start).

4. Results
Previous work has shown the benefit of validating
methods over multiple, complementary levels of ab-
straction (sub-microscopic, microscopic, and macro-
scopic) [22]. In the present work, we propose an
evaluation of our methods on two levels: microscopic
and macroscopic. Indeed, the most efficient way of
simulating the swarm of robots is by considering a
continuous macroscopic model, derived directly from
the ordinary differential equation, Eq. 3. In order
to validate the control policy at a lower level of ab-
straction, we also implement a discrete microscopic
model that emulates the behavior of individual robot
controllers. This agent-level control is based on the

transition rates k(s)
ij encoded by the transition matrix

K(s): A robot of species s at site i transitions to site

j according to probability p(s)
ij that is an element of

the matrix P(s) = eK
(s)∆T , where ∆T is the duration

5

⎨

Fixed K:

Adaptive K:

Results

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

PREPRINT 2015-08-31

vol. 00 no. 0/0000 Adaptive Distribution of a Swarm of Heterogeneous Robots

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

µ
(Y

)

Time [s]

Mic. Fixed-NC

Mic. Adapt.-NC

Mac. Fixed-NC

Figure 3. Ratio of misplaced traits over time for
the initial and desired trait distributions depicted in
Fig. 1. The simulation was run with 3893 robots and
a total of 7786 present traits. The plot shows the
macroscopic model as well as the average over 20 it-
erations of the microscopic model with and without
continuous optimization of transition rates. The er-
rorbars show the standard deviation.

ways be larger than 0.

4.2. Comparison of Methods

We compare the three optimization methods, Fixed-
NC, Adaptive-NC, Fixed-C and evaluate their
performance with respect to the metric in Eq. 29. We
instantiate 40 random graphs with M = 6 nodes, and
random matrices Q with S = 4 species and U = 4
traits, and generate random desired trait distribu-
tions Ȳ for each graph. The microscopic model is
iterated 4 times on each graph instantiation. For
the method Fixed-C, we compute a random robot
distribution X̄ that satisfies the desired trait distri-
bution. We measure the time tµ,thresh at which the
system converges to a value µthresh = 5% of misplaced
traits. Since we sample random matrices Q, we ob-
tain different rank values. Fig. 4(a) shows results for
rank(Q) = 3, i.e., a system with redundant species,
and Fig. 4(b) shows results for rank(Q) = 4, i.e., a
system with complementary species (cf. the descrip-
tion in Sec. 2.3).

The plots show that our method Fixed-NC is able
to improve upon Fixed-C: for rank(Q) = 4 by 16%,
and for rank(Q) = 3 by 25%. The stronger improve-
ment in the lower-rank case points towards the im-
portance of finding a good final robot distribution X̄
when several are possible that satisfy Eq. 7. The re-
sults for Adaptive-NC confirm the fast convergence
towards desired trait distributions, with a 75% im-
provement over Fixed-NC in both cases. It is clear
that this method outperforms the other two methods
because of its ability to take into account the cur-
rent state of the robot distribution, and to adapt the
transition rates as a function of this.

Finally, we compute the error obtained by our
method Fixed-NC by comparing the analytical
steady-state distribution of traits (obtained by tak-

t µ
,t

h
re

sh
[s

]

Fixed-C Fixed-NC Adapt.-NC

(a)

Fixed-C Fixed-NC Adapt.-NC

(b)

Figure 4. The plot shows the convergence time of
three optimization methods, evaluated on the micro-
scopic model, with tµthresh for µthresh = 0.05, for 40
random graphs with M = 6 and random matrices Q

with 4 species and 4 traits. The microscopic model
was iterated 4 times over each graph instantiation. (a)
rank(Q) = 3 (b) rank(Q) = 4. The boxplots show the
median and the 25th and 75th percentiles.

ing the eigenvectors that correspond to the zero-
eigenvalues of each rate matrix K(s) and multiply-
ing them by Q) with the desired trait distribution
Ȳ. The median, 90th percentile and maximum error
from the steady-state to the desired trait distribution
are 0.108%, 0.572% and 0.812%, respectively. These
results demonstrate that, despite the fact that our
method is not explicitly optimizing for the steady-
state, it reaches a steady-state error smaller than sys-
tem noise (at steady-state).

5. Conclusion
We present a method that distributes a swarm of
heterogeneous robots among a set of tasks with the
goal of satisfying a desired distribution of robot ca-
pabilities among those tasks. We propose a formula-
tion for heterogeneous robot systems through species
and traits, and show how this formulation is used to
achieve an optimal distribution of robots as a func-
tion of a desired final trait configuration. To find
the optimal transition rates, we pose an optimization
problem, and develop a solution based on an analyti-
cal gradient that is computationally efficient and ca-
pable of producing fast convergence times. Building
on this result, we propose a variant real-time opti-
mization method that enables an online adaptation
of transition rates as a function of the state of the
current robot distribution. We validate our approach
on random graph instantiations, and show that our
baseline method outperforms a classical alternative
approach. Also, we show how, when using the vari-
ant adaptive optimization, a significant gain in con-
vergence speed is made. We believe that this method
is well-suited to applications that control large-scale
teams of robots that need to converge quickly to de-
sired configurations as a function of their capabilities,

7

Ra
tio

 o
f m

is
pl

ac
ed

 tr
ai

ts

Time [s]

Macroscopic
Adaptive Micro.
Fixed Micro.

Approach

t0 t1 t2 t3

1

2

3

4

5

Fig. 1. Four configurations of a system with 5 tasks (nodes) and 4 traits. The trait abundance per task is represented by a bar plot. The edges of this
strongly connected graph represent the possibility of switching between a pair of tasks. The system’s initial distribution is shown at t0, with subsequent
desired target distributions at t[1,2,3].

in real time. Hence, we consider a strategy that is scalable
in the number of robots and their capabilities, and is robust
to changes in the robot population [4, 8]. An important
property of this strategy is its inherently decentralized ar-
chitecture, with robots switching between tasks (behaviors)
stochastically. The key difference between our work and
previous work is that we formulate our desired state as a
distribution of traits among tasks, instead of specifying the
desired state as a direct measure of the robot distribution.
In other words, our framework allows a user to specify
how much of a given capability is needed for a given task,
irrespective of which robot type satisfies that need. As a
consequence, we do not employ optimization methods that
utilize final robot distributions in their formulations (which
is the case in previous works [4] and [14]). Instead, we
explicitly optimize the distribution of traits, and implicitly
solve the combinatorial problem of distributing the right
number of robots of a given type to the right tasks.

II. PROBLEM FORMULATION

Heterogeneity and diversity are core concepts of this work.
To develop our formalism, we borrow terminology from
biodiversity literature [17]. We define our robot system as
a community of robots. Each robot belongs to a species,
defining the unique set of traits that encodes the robots’ ca-
pabilities. In this work, we will consider binary instantiations
of traits (corresponding to the presence or absence of a given
trait in a species). As an example, a trait might consider the
presence/absence of a particular sensor, such as a camera or
laser range finder. Another trait might consider the capability
of fitting through a passageway with a fixed width. In this
work, we assume that the tasks have been encoded through
binary characteristics that represent the skill sets critical to
task completion.

A. Notation

We consider a community of S robot species, with a
total number of robots N , and N (s) robots per species
such that

∑S
s=1 N

(s) = N . The community is defined by
a set of U traits, and each robot species owns a subset
of these traits. A species is defined by a binary vector

q(s) = [q(s)1 , q
(s)
2 , ..., q

(s)
U]. We can then define a S×U matrix

Q, with rows q(s):

0

1

0

1

0

1

0

1

t0 t1 t2 t3

1

2

3

4

5

D
is

tr
ib

.
o

f
tr

ai
t

1
D

is
tr

ib
.

o
f

tr
ai

t
2

D
is

tr
ib

.o
f

tr
ai

t
3

D
is

tr
ib

.
o

f
tr

ai
t

4

Fig. 2. Evolution over time of the trait distribution as specified by the
distributions shown in Fig. 1. Each subplot represents one trait, indicating
the distribution of that trait over the set of tasks (for each subplot, task 1 is
shown at the bottom and task 5 at the top). The system’s initial distribution is
shown at t0, with subsequent desired target distributions reached at t[1,2,3].

Qsu =

{

0 , if species s does not have trait u
1 , if species s has trait u

We model the interconnection topology of the M tasks via
a directed graph, G = (E ,V) where the set of vertices,
V , represents tasks {1, . . . ,M} and the set of edges, E ,
represents the ordered pairs (i, j), such that (i, j) ∈ V × V ,
and i and j are adjacent. Edges denote the possibility to
switch between two adjacent tasks. We assume the graph G
is a strongly connected graph, i.e., a path exists between any
pair of vertices (in contrast to a fully connected graph, where
an edge exists between any pair of vertices), and we assume
the robots have knowledge of this graph. We assign every

edge in E a transition rate, k
(s)
ij > 0, where k

(s)
ij defines the

transition probability per unit time for one robot of species

s at site i to switch to site j. Here k
(s)
ij is a stochastic

transition rule. We impose a limitation on the maximum

rate of each edge with k
(s)
ij < k

(s)
ij,max. These values can

initial target

How hard is it to redistribute the robot community as a function
of its diversity?

Effects of Diversity

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

PREPRINT 2015-08-31

vol. 00 no. 0/0000 Adaptive Distribution of a Swarm of Heterogeneous Robots

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

These two properties result in the following definition:

K(s)
ij =

⎧

⎪

⎨

⎪

⎩

k(s)
ji , if i ̸= j, (i, j) ∈ E

0, if i ̸= j, (i, j) /∈ E

−
∑M

i=1,(j,i)∈E k(s)
ij , if i = j

Since the total number of robots and the number of
robots per species is conserved, the system in Eq. 3
is subject to the constraint

X⊤ · 1 = [N (1), N (2), . . . , N (S)]⊤ (6)

The goal is to find an optimal rate matrix K(s)⋆ for
each species s so that we have

Ȳ = X̄ · Q (7)

In other words, the task is to redeploy the robots
of each species configured according to X(0) initially,
so that a desired trait configuration Ȳ is reached. In
doing this, we reach a robot configuration X̄ that
satisfies Eq. 1, subject to Eq. 6.

2.3. System Properties
Since we describe the desired configuration of our sys-
tem through Ȳ, the final robot distribution X̄ is not
known a priori. Given knowledge of Q we can infer
the following properties: If a solution to Eq. 7 subject
to Eq. 6 exists, then

(1.) If rank(Q) < S, the system is underdetermined,
and an infinite number of solutions X̄ will satisfy
Eq. 7. In other words, at least one species in the
system can be replaced by a combination of the
other species.

(2.) If rank(Q) = S, only one solution X̄ exists that
satisfies Eq. 7. In other words, no species in the
system can be expressed as a combination of the
other species.

We note that solving case (1) is relevant when we
embed redundancy into the robot system, and case
(2) is relevant when we consider fully complementary
robot species.

3. Methodology
In this section, we describe our methodology for
obtaining an optimal transition matrix K(s)⋆ for
each species so that the desired trait distribution is
reached. Berman et al. [8] present an exposé of opti-
mization methods that can be used to obtain optimal
transition rates for a homogenous robot swarm that
is required to converge to a desired distribution. Two
general approaches are considered: convex optimiza-
tion and stochastic optimization. The convex opti-
mization approach requires knowledge of the desired
final robot distribution. Indeed, our problem formu-
lation specifies a desired trait distribution Ȳ without
explicit definition of the final robot distribution X̄.
Hence, convex optimization strategies as in [8] are
not applicable to our problem, unless rank(Q) = S,

and we can infer X̄. Given this rationale, we choose
an optimization approach that is able to find opti-
mal transition rates with knowledge of Ȳ and X(0),
without knowledge of X̄. Although fully stochastic
schemes such as Metropolis optimization have been
shown to produce similar results [8], they are not com-
putationally efficient, and are ill-suited to real-time
applications. In the following, we present a differen-
tiable objective function that can be efficiently mini-
mized through gradient descent techniques. We show
that our method has a computational complexity that
is well-suited to real-time applications. Additionally,
our method explicitly minimizes the convergence time
of K(s), unlike the convex optimization methods pre-
sented in [8] which approximate K(s) with a symmet-
ric equivalent (forcing bidirectionally equal transition
rates between sites).

3.1. Design of Optimal Transition Rates
We combine the solution of the linear ordinary dif-
ferential equation, Eq. 3, and Eq. 7 to obtain the
solution for a desired trait distribution

Ȳ =
S

∑

s=1

eK
(s)⋆τ x(s)

0 · q(s) (8)

where τ is the time at which the desired state is
reached. We design our objective function as follows.
To find the values of K(s)⋆ for all species for the given
initial configuration, X(0), we consider the following
optimization

minimize J (1) =
∥

∥

∥
Ȳ −

∑S
s=1 eK

(s)τ x(s)
0 · q(s)

∥

∥

∥

2

F
(9)

such that k(s)
ij < k(s)

ij,max

which formulates that a minimum cost is found when
the final trait distribution corresponds to the de-
sired trait distribution, subject to maximum transi-

tion rates k(s)
ij,max. The notation x(s)

0 is shorthand for

x(s)(0). The operator ∥ · ∥F denotes the Frobenius
norm of a matrix. There is no closed-form solution
to the optimization problem in Eq. 9, but we can use
the derivatives of J (1) with respect to the parameters
to perform gradient descent. So that the implemen-
tation of the optimization function is efficient, it is
important that the function is differentiable and that
an analytical gradient can be computed. By applying
the chain rule, the derivative of our objective function
with respect to the transition matrix K(s) is

∂J (1)

∂K(s)
=

∂J (1)

∂eK(s)τ
·

∂eK
(s)τ

∂K(s)τ
·

∂K(s)τ

∂K(s)
(10)

We first compute the derivative of the cost with re-
spect to the expression eK

(s)τ .

∂J (1)

∂eK(s)τ
= 2

[

∑

r∈S

eK
(r)τ x(r)

0 · q(r) − Ȳ

]

·
[

x(s)
0 · q(s)

]⊤

(11)

3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

PREPRINT 2015-08-31

vol. 00 no. 0/0000 Adaptive Distribution of a Swarm of Heterogeneous Robots

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

These two properties result in the following definition:

K(s)
ij =

⎧

⎪

⎨

⎪

⎩

k(s)
ji , if i ̸= j, (i, j) ∈ E

0, if i ̸= j, (i, j) /∈ E

−
∑M

i=1,(j,i)∈E k(s)
ij , if i = j

Since the total number of robots and the number of
robots per species is conserved, the system in Eq. 3
is subject to the constraint

X⊤ · 1 = [N (1), N (2), . . . , N (S)]⊤ (6)

The goal is to find an optimal rate matrix K(s)⋆ for
each species s so that we have

Ȳ = X̄ · Q (7)

In other words, the task is to redeploy the robots
of each species configured according to X(0) initially,
so that a desired trait configuration Ȳ is reached. In
doing this, we reach a robot configuration X̄ that
satisfies Eq. 1, subject to Eq. 6.

2.3. System Properties
Since we describe the desired configuration of our sys-
tem through Ȳ, the final robot distribution X̄ is not
known a priori. Given knowledge of Q we can infer
the following properties: If a solution to Eq. 7 subject
to Eq. 6 exists, then

(1.) If rank(Q) < S, the system is underdetermined,
and an infinite number of solutions X̄ will satisfy
Eq. 7. In other words, at least one species in the
system can be replaced by a combination of the
other species.

(2.) If rank(Q) = S, only one solution X̄ exists that
satisfies Eq. 7. In other words, no species in the
system can be expressed as a combination of the
other species.

We note that solving case (1) is relevant when we
embed redundancy into the robot system, and case
(2) is relevant when we consider fully complementary
robot species.

3. Methodology
In this section, we describe our methodology for
obtaining an optimal transition matrix K(s)⋆ for
each species so that the desired trait distribution is
reached. Berman et al. [8] present an exposé of opti-
mization methods that can be used to obtain optimal
transition rates for a homogenous robot swarm that
is required to converge to a desired distribution. Two
general approaches are considered: convex optimiza-
tion and stochastic optimization. The convex opti-
mization approach requires knowledge of the desired
final robot distribution. Indeed, our problem formu-
lation specifies a desired trait distribution Ȳ without
explicit definition of the final robot distribution X̄.
Hence, convex optimization strategies as in [8] are
not applicable to our problem, unless rank(Q) = S,

and we can infer X̄. Given this rationale, we choose
an optimization approach that is able to find opti-
mal transition rates with knowledge of Ȳ and X(0),
without knowledge of X̄. Although fully stochastic
schemes such as Metropolis optimization have been
shown to produce similar results [8], they are not com-
putationally efficient, and are ill-suited to real-time
applications. In the following, we present a differen-
tiable objective function that can be efficiently mini-
mized through gradient descent techniques. We show
that our method has a computational complexity that
is well-suited to real-time applications. Additionally,
our method explicitly minimizes the convergence time
of K(s), unlike the convex optimization methods pre-
sented in [8] which approximate K(s) with a symmet-
ric equivalent (forcing bidirectionally equal transition
rates between sites).

3.1. Design of Optimal Transition Rates
We combine the solution of the linear ordinary dif-
ferential equation, Eq. 3, and Eq. 7 to obtain the
solution for a desired trait distribution

Ȳ =
S

∑

s=1

eK
(s)⋆τ x(s)

0 · q(s) (8)

where τ is the time at which the desired state is
reached. We design our objective function as follows.
To find the values of K(s)⋆ for all species for the given
initial configuration, X(0), we consider the following
optimization

minimize J (1) =
∥

∥

∥
Ȳ −

∑S
s=1 eK

(s)τ x(s)
0 · q(s)

∥

∥

∥

2

F
(9)

such that k(s)
ij < k(s)

ij,max

which formulates that a minimum cost is found when
the final trait distribution corresponds to the de-
sired trait distribution, subject to maximum transi-

tion rates k(s)
ij,max. The notation x(s)

0 is shorthand for

x(s)(0). The operator ∥ · ∥F denotes the Frobenius
norm of a matrix. There is no closed-form solution
to the optimization problem in Eq. 9, but we can use
the derivatives of J (1) with respect to the parameters
to perform gradient descent. So that the implemen-
tation of the optimization function is efficient, it is
important that the function is differentiable and that
an analytical gradient can be computed. By applying
the chain rule, the derivative of our objective function
with respect to the transition matrix K(s) is

∂J (1)

∂K(s)
=

∂J (1)

∂eK(s)τ
·

∂eK
(s)τ

∂K(s)τ
·

∂K(s)τ

∂K(s)
(10)

We first compute the derivative of the cost with re-
spect to the expression eK

(s)τ .

∂J (1)

∂eK(s)τ
= 2

[

∑

r∈S

eK
(r)τ x(r)

0 · q(r) − Ȳ

]

·
[

x(s)
0 · q(s)

]⊤

(11)

3

All species are independent There are dependent species

Effects of Diversity

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

PREPRINT 2015-08-31

vol. 00 no. 0/0000 Adaptive Distribution of a Swarm of Heterogeneous Robots

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

µ
(Y

)

Time [s]

Mic. Fixed-NC

Mic. Adapt.-NC

Mac. Fixed-NC

Figure 3. Ratio of misplaced traits over time for
the initial and desired trait distributions depicted in
Fig. 1. The simulation was run with 3893 robots and
a total of 7786 present traits. The plot shows the
macroscopic model as well as the average over 20 it-
erations of the microscopic model with and without
continuous optimization of transition rates. The er-
rorbars show the standard deviation.

ways be larger than 0.

4.2. Comparison of Methods

We compare the three optimization methods, Fixed-
NC, Adaptive-NC, Fixed-C and evaluate their
performance with respect to the metric in Eq. 29. We
instantiate 40 random graphs with M = 6 nodes, and
random matrices Q with S = 4 species and U = 4
traits, and generate random desired trait distribu-
tions Ȳ for each graph. The microscopic model is
iterated 4 times on each graph instantiation. For
the method Fixed-C, we compute a random robot
distribution X̄ that satisfies the desired trait distri-
bution. We measure the time tµ,thresh at which the
system converges to a value µthresh = 5% of misplaced
traits. Since we sample random matrices Q, we ob-
tain different rank values. Fig. 4(a) shows results for
rank(Q) = 3, i.e., a system with redundant species,
and Fig. 4(b) shows results for rank(Q) = 4, i.e., a
system with complementary species (cf. the descrip-
tion in Sec. 2.3).

The plots show that our method Fixed-NC is able
to improve upon Fixed-C: for rank(Q) = 4 by 16%,
and for rank(Q) = 3 by 25%. The stronger improve-
ment in the lower-rank case points towards the im-
portance of finding a good final robot distribution X̄
when several are possible that satisfy Eq. 7. The re-
sults for Adaptive-NC confirm the fast convergence
towards desired trait distributions, with a 75% im-
provement over Fixed-NC in both cases. It is clear
that this method outperforms the other two methods
because of its ability to take into account the cur-
rent state of the robot distribution, and to adapt the
transition rates as a function of this.

Finally, we compute the error obtained by our
method Fixed-NC by comparing the analytical
steady-state distribution of traits (obtained by tak-

t µ
,t

h
re

sh
[s

]

Fixed-C Fixed-NC Adapt.-NC

(a)

Fixed-C Fixed-NC Adapt.-NC

(b)

Figure 4. The plot shows the convergence time of
three optimization methods, evaluated on the micro-
scopic model, with tµthresh for µthresh = 0.05, for 40
random graphs with M = 6 and random matrices Q

with 4 species and 4 traits. The microscopic model
was iterated 4 times over each graph instantiation. (a)
rank(Q) = 3 (b) rank(Q) = 4. The boxplots show the
median and the 25th and 75th percentiles.

ing the eigenvectors that correspond to the zero-
eigenvalues of each rate matrix K(s) and multiply-
ing them by Q) with the desired trait distribution
Ȳ. The median, 90th percentile and maximum error
from the steady-state to the desired trait distribution
are 0.108%, 0.572% and 0.812%, respectively. These
results demonstrate that, despite the fact that our
method is not explicitly optimizing for the steady-
state, it reaches a steady-state error smaller than sys-
tem noise (at steady-state).

5. Conclusion
We present a method that distributes a swarm of
heterogeneous robots among a set of tasks with the
goal of satisfying a desired distribution of robot ca-
pabilities among those tasks. We propose a formula-
tion for heterogeneous robot systems through species
and traits, and show how this formulation is used to
achieve an optimal distribution of robots as a func-
tion of a desired final trait configuration. To find
the optimal transition rates, we pose an optimization
problem, and develop a solution based on an analyti-
cal gradient that is computationally efficient and ca-
pable of producing fast convergence times. Building
on this result, we propose a variant real-time opti-
mization method that enables an online adaptation
of transition rates as a function of the state of the
current robot distribution. We validate our approach
on random graph instantiations, and show that our
baseline method outperforms a classical alternative
approach. Also, we show how, when using the vari-
ant adaptive optimization, a significant gain in con-
vergence speed is made. We believe that this method
is well-suited to applications that control large-scale
teams of robots that need to converge quickly to de-
sired configurations as a function of their capabilities,

7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

PREPRINT 2015-08-31

vol. 00 no. 0/0000 Adaptive Distribution of a Swarm of Heterogeneous Robots

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

µ
(Y

)

Time [s]

Mic. Fixed-NC

Mic. Adapt.-NC

Mac. Fixed-NC

Figure 3. Ratio of misplaced traits over time for
the initial and desired trait distributions depicted in
Fig. 1. The simulation was run with 3893 robots and
a total of 7786 present traits. The plot shows the
macroscopic model as well as the average over 20 it-
erations of the microscopic model with and without
continuous optimization of transition rates. The er-
rorbars show the standard deviation.

ways be larger than 0.

4.2. Comparison of Methods

We compare the three optimization methods, Fixed-
NC, Adaptive-NC, Fixed-C and evaluate their
performance with respect to the metric in Eq. 29. We
instantiate 40 random graphs with M = 6 nodes, and
random matrices Q with S = 4 species and U = 4
traits, and generate random desired trait distribu-
tions Ȳ for each graph. The microscopic model is
iterated 4 times on each graph instantiation. For
the method Fixed-C, we compute a random robot
distribution X̄ that satisfies the desired trait distri-
bution. We measure the time tµ,thresh at which the
system converges to a value µthresh = 5% of misplaced
traits. Since we sample random matrices Q, we ob-
tain different rank values. Fig. 4(a) shows results for
rank(Q) = 3, i.e., a system with redundant species,
and Fig. 4(b) shows results for rank(Q) = 4, i.e., a
system with complementary species (cf. the descrip-
tion in Sec. 2.3).

The plots show that our method Fixed-NC is able
to improve upon Fixed-C: for rank(Q) = 4 by 16%,
and for rank(Q) = 3 by 25%. The stronger improve-
ment in the lower-rank case points towards the im-
portance of finding a good final robot distribution X̄
when several are possible that satisfy Eq. 7. The re-
sults for Adaptive-NC confirm the fast convergence
towards desired trait distributions, with a 75% im-
provement over Fixed-NC in both cases. It is clear
that this method outperforms the other two methods
because of its ability to take into account the cur-
rent state of the robot distribution, and to adapt the
transition rates as a function of this.

Finally, we compute the error obtained by our
method Fixed-NC by comparing the analytical
steady-state distribution of traits (obtained by tak-

t µ
,t

h
re

sh
[s

]

Fixed-C Fixed-NC Adapt.-NC

(a)

Fixed-C Fixed-NC Adapt.-NC

(b)

Figure 4. The plot shows the convergence time of
three optimization methods, evaluated on the micro-
scopic model, with tµthresh for µthresh = 0.05, for 40
random graphs with M = 6 and random matrices Q

with 4 species and 4 traits. The microscopic model
was iterated 4 times over each graph instantiation. (a)
rank(Q) = 3 (b) rank(Q) = 4. The boxplots show the
median and the 25th and 75th percentiles.

ing the eigenvectors that correspond to the zero-
eigenvalues of each rate matrix K(s) and multiply-
ing them by Q) with the desired trait distribution
Ȳ. The median, 90th percentile and maximum error
from the steady-state to the desired trait distribution
are 0.108%, 0.572% and 0.812%, respectively. These
results demonstrate that, despite the fact that our
method is not explicitly optimizing for the steady-
state, it reaches a steady-state error smaller than sys-
tem noise (at steady-state).

5. Conclusion
We present a method that distributes a swarm of
heterogeneous robots among a set of tasks with the
goal of satisfying a desired distribution of robot ca-
pabilities among those tasks. We propose a formula-
tion for heterogeneous robot systems through species
and traits, and show how this formulation is used to
achieve an optimal distribution of robots as a func-
tion of a desired final trait configuration. To find
the optimal transition rates, we pose an optimization
problem, and develop a solution based on an analyti-
cal gradient that is computationally efficient and ca-
pable of producing fast convergence times. Building
on this result, we propose a variant real-time opti-
mization method that enables an online adaptation
of transition rates as a function of the state of the
current robot distribution. We validate our approach
on random graph instantiations, and show that our
baseline method outperforms a classical alternative
approach. Also, we show how, when using the vari-
ant adaptive optimization, a significant gain in con-
vergence speed is made. We believe that this method
is well-suited to applications that control large-scale
teams of robots that need to converge quickly to de-
sired configurations as a function of their capabilities,

7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

PREPRINT 2015-08-31

vol. 00 no. 0/0000 Adaptive Distribution of a Swarm of Heterogeneous Robots

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

These two properties result in the following definition:

K(s)
ij =

⎧

⎪

⎨

⎪

⎩

k(s)
ji , if i ̸= j, (i, j) ∈ E

0, if i ̸= j, (i, j) /∈ E

−
∑M

i=1,(j,i)∈E k(s)
ij , if i = j

Since the total number of robots and the number of
robots per species is conserved, the system in Eq. 3
is subject to the constraint

X⊤ · 1 = [N (1), N (2), . . . , N (S)]⊤ (6)

The goal is to find an optimal rate matrix K(s)⋆ for
each species s so that we have

Ȳ = X̄ · Q (7)

In other words, the task is to redeploy the robots
of each species configured according to X(0) initially,
so that a desired trait configuration Ȳ is reached. In
doing this, we reach a robot configuration X̄ that
satisfies Eq. 1, subject to Eq. 6.

2.3. System Properties
Since we describe the desired configuration of our sys-
tem through Ȳ, the final robot distribution X̄ is not
known a priori. Given knowledge of Q we can infer
the following properties: If a solution to Eq. 7 subject
to Eq. 6 exists, then

(1.) If rank(Q) < S, the system is underdetermined,
and an infinite number of solutions X̄ will satisfy
Eq. 7. In other words, at least one species in the
system can be replaced by a combination of the
other species.

(2.) If rank(Q) = S, only one solution X̄ exists that
satisfies Eq. 7. In other words, no species in the
system can be expressed as a combination of the
other species.

We note that solving case (1) is relevant when we
embed redundancy into the robot system, and case
(2) is relevant when we consider fully complementary
robot species.

3. Methodology
In this section, we describe our methodology for
obtaining an optimal transition matrix K(s)⋆ for
each species so that the desired trait distribution is
reached. Berman et al. [8] present an exposé of opti-
mization methods that can be used to obtain optimal
transition rates for a homogenous robot swarm that
is required to converge to a desired distribution. Two
general approaches are considered: convex optimiza-
tion and stochastic optimization. The convex opti-
mization approach requires knowledge of the desired
final robot distribution. Indeed, our problem formu-
lation specifies a desired trait distribution Ȳ without
explicit definition of the final robot distribution X̄.
Hence, convex optimization strategies as in [8] are
not applicable to our problem, unless rank(Q) = S,

and we can infer X̄. Given this rationale, we choose
an optimization approach that is able to find opti-
mal transition rates with knowledge of Ȳ and X(0),
without knowledge of X̄. Although fully stochastic
schemes such as Metropolis optimization have been
shown to produce similar results [8], they are not com-
putationally efficient, and are ill-suited to real-time
applications. In the following, we present a differen-
tiable objective function that can be efficiently mini-
mized through gradient descent techniques. We show
that our method has a computational complexity that
is well-suited to real-time applications. Additionally,
our method explicitly minimizes the convergence time
of K(s), unlike the convex optimization methods pre-
sented in [8] which approximate K(s) with a symmet-
ric equivalent (forcing bidirectionally equal transition
rates between sites).

3.1. Design of Optimal Transition Rates
We combine the solution of the linear ordinary dif-
ferential equation, Eq. 3, and Eq. 7 to obtain the
solution for a desired trait distribution

Ȳ =
S

∑

s=1

eK
(s)⋆τ x(s)

0 · q(s) (8)

where τ is the time at which the desired state is
reached. We design our objective function as follows.
To find the values of K(s)⋆ for all species for the given
initial configuration, X(0), we consider the following
optimization

minimize J (1) =
∥

∥

∥
Ȳ −

∑S
s=1 eK

(s)τ x(s)
0 · q(s)

∥

∥

∥

2

F
(9)

such that k(s)
ij < k(s)

ij,max

which formulates that a minimum cost is found when
the final trait distribution corresponds to the de-
sired trait distribution, subject to maximum transi-

tion rates k(s)
ij,max. The notation x(s)

0 is shorthand for

x(s)(0). The operator ∥ · ∥F denotes the Frobenius
norm of a matrix. There is no closed-form solution
to the optimization problem in Eq. 9, but we can use
the derivatives of J (1) with respect to the parameters
to perform gradient descent. So that the implemen-
tation of the optimization function is efficient, it is
important that the function is differentiable and that
an analytical gradient can be computed. By applying
the chain rule, the derivative of our objective function
with respect to the transition matrix K(s) is

∂J (1)

∂K(s)
=

∂J (1)

∂eK(s)τ
·

∂eK
(s)τ

∂K(s)τ
·

∂K(s)τ

∂K(s)
(10)

We first compute the derivative of the cost with re-
spect to the expression eK

(s)τ .

∂J (1)

∂eK(s)τ
= 2

[

∑

r∈S

eK
(r)τ x(r)

0 · q(r) − Ȳ

]

·
[

x(s)
0 · q(s)

]⊤

(11)

3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

PREPRINT 2015-08-31

vol. 00 no. 0/0000 Adaptive Distribution of a Swarm of Heterogeneous Robots

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

These two properties result in the following definition:

K(s)
ij =

⎧

⎪

⎨

⎪

⎩

k(s)
ji , if i ̸= j, (i, j) ∈ E

0, if i ̸= j, (i, j) /∈ E

−
∑M

i=1,(j,i)∈E k(s)
ij , if i = j

Since the total number of robots and the number of
robots per species is conserved, the system in Eq. 3
is subject to the constraint

X⊤ · 1 = [N (1), N (2), . . . , N (S)]⊤ (6)

The goal is to find an optimal rate matrix K(s)⋆ for
each species s so that we have

Ȳ = X̄ · Q (7)

In other words, the task is to redeploy the robots
of each species configured according to X(0) initially,
so that a desired trait configuration Ȳ is reached. In
doing this, we reach a robot configuration X̄ that
satisfies Eq. 1, subject to Eq. 6.

2.3. System Properties
Since we describe the desired configuration of our sys-
tem through Ȳ, the final robot distribution X̄ is not
known a priori. Given knowledge of Q we can infer
the following properties: If a solution to Eq. 7 subject
to Eq. 6 exists, then

(1.) If rank(Q) < S, the system is underdetermined,
and an infinite number of solutions X̄ will satisfy
Eq. 7. In other words, at least one species in the
system can be replaced by a combination of the
other species.

(2.) If rank(Q) = S, only one solution X̄ exists that
satisfies Eq. 7. In other words, no species in the
system can be expressed as a combination of the
other species.

We note that solving case (1) is relevant when we
embed redundancy into the robot system, and case
(2) is relevant when we consider fully complementary
robot species.

3. Methodology
In this section, we describe our methodology for
obtaining an optimal transition matrix K(s)⋆ for
each species so that the desired trait distribution is
reached. Berman et al. [8] present an exposé of opti-
mization methods that can be used to obtain optimal
transition rates for a homogenous robot swarm that
is required to converge to a desired distribution. Two
general approaches are considered: convex optimiza-
tion and stochastic optimization. The convex opti-
mization approach requires knowledge of the desired
final robot distribution. Indeed, our problem formu-
lation specifies a desired trait distribution Ȳ without
explicit definition of the final robot distribution X̄.
Hence, convex optimization strategies as in [8] are
not applicable to our problem, unless rank(Q) = S,

and we can infer X̄. Given this rationale, we choose
an optimization approach that is able to find opti-
mal transition rates with knowledge of Ȳ and X(0),
without knowledge of X̄. Although fully stochastic
schemes such as Metropolis optimization have been
shown to produce similar results [8], they are not com-
putationally efficient, and are ill-suited to real-time
applications. In the following, we present a differen-
tiable objective function that can be efficiently mini-
mized through gradient descent techniques. We show
that our method has a computational complexity that
is well-suited to real-time applications. Additionally,
our method explicitly minimizes the convergence time
of K(s), unlike the convex optimization methods pre-
sented in [8] which approximate K(s) with a symmet-
ric equivalent (forcing bidirectionally equal transition
rates between sites).

3.1. Design of Optimal Transition Rates
We combine the solution of the linear ordinary dif-
ferential equation, Eq. 3, and Eq. 7 to obtain the
solution for a desired trait distribution

Ȳ =
S

∑

s=1

eK
(s)⋆τ x(s)

0 · q(s) (8)

where τ is the time at which the desired state is
reached. We design our objective function as follows.
To find the values of K(s)⋆ for all species for the given
initial configuration, X(0), we consider the following
optimization

minimize J (1) =
∥

∥

∥
Ȳ −

∑S
s=1 eK

(s)τ x(s)
0 · q(s)

∥

∥

∥

2

F
(9)

such that k(s)
ij < k(s)

ij,max

which formulates that a minimum cost is found when
the final trait distribution corresponds to the de-
sired trait distribution, subject to maximum transi-

tion rates k(s)
ij,max. The notation x(s)

0 is shorthand for

x(s)(0). The operator ∥ · ∥F denotes the Frobenius
norm of a matrix. There is no closed-form solution
to the optimization problem in Eq. 9, but we can use
the derivatives of J (1) with respect to the parameters
to perform gradient descent. So that the implemen-
tation of the optimization function is efficient, it is
important that the function is differentiable and that
an analytical gradient can be computed. By applying
the chain rule, the derivative of our objective function
with respect to the transition matrix K(s) is

∂J (1)

∂K(s)
=

∂J (1)

∂eK(s)τ
·

∂eK
(s)τ

∂K(s)τ
·

∂K(s)τ

∂K(s)
(10)

We first compute the derivative of the cost with re-
spect to the expression eK

(s)τ .

∂J (1)

∂eK(s)τ
= 2

[

∑

r∈S

eK
(r)τ x(r)

0 · q(r) − Ȳ

]

·
[

x(s)
0 · q(s)

]⊤

(11)

3

Ti
m

e
to

 c
on

ve
rg

en
ce

 [s
]

Benchmark
Fixed

Adaptive

Benchmark
Fixed

Adaptive

Conclusions

t0 t1 t2 t3

1

2

3

4

5

Fig. 1. Four configurations of a system with 5 tasks (nodes) and 4 traits. The trait abundance per task is represented by a bar plot. The edges of this
strongly connected graph represent the possibility of switching between a pair of tasks. The system’s initial distribution is shown at t0, with subsequent
desired target distributions at t[1,2,3].

in real time. Hence, we consider a strategy that is scalable
in the number of robots and their capabilities, and is robust
to changes in the robot population [4, 8]. An important
property of this strategy is its inherently decentralized ar-
chitecture, with robots switching between tasks (behaviors)
stochastically. The key difference between our work and
previous work is that we formulate our desired state as a
distribution of traits among tasks, instead of specifying the
desired state as a direct measure of the robot distribution.
In other words, our framework allows a user to specify
how much of a given capability is needed for a given task,
irrespective of which robot type satisfies that need. As a
consequence, we do not employ optimization methods that
utilize final robot distributions in their formulations (which
is the case in previous works [4] and [14]). Instead, we
explicitly optimize the distribution of traits, and implicitly
solve the combinatorial problem of distributing the right
number of robots of a given type to the right tasks.

II. PROBLEM FORMULATION

Heterogeneity and diversity are core concepts of this work.
To develop our formalism, we borrow terminology from
biodiversity literature [17]. We define our robot system as
a community of robots. Each robot belongs to a species,
defining the unique set of traits that encodes the robots’ ca-
pabilities. In this work, we will consider binary instantiations
of traits (corresponding to the presence or absence of a given
trait in a species). As an example, a trait might consider the
presence/absence of a particular sensor, such as a camera or
laser range finder. Another trait might consider the capability
of fitting through a passageway with a fixed width. In this
work, we assume that the tasks have been encoded through
binary characteristics that represent the skill sets critical to
task completion.

A. Notation

We consider a community of S robot species, with a
total number of robots N , and N (s) robots per species
such that

∑S
s=1 N

(s) = N . The community is defined by
a set of U traits, and each robot species owns a subset
of these traits. A species is defined by a binary vector

q(s) = [q(s)1 , q
(s)
2 , ..., q

(s)
U]. We can then define a S×U matrix

Q, with rows q(s):

0

1

0

1

0

1

0

1

t0 t1 t2 t3

1

2

3

4

5

D
is

tr
ib

.
o

f
tr

ai
t

1
D

is
tr

ib
.

o
f

tr
ai

t
2

D
is

tr
ib

.o
f

tr
ai

t
3

D
is

tr
ib

.
o

f
tr

ai
t

4

Fig. 2. Evolution over time of the trait distribution as specified by the
distributions shown in Fig. 1. Each subplot represents one trait, indicating
the distribution of that trait over the set of tasks (for each subplot, task 1 is
shown at the bottom and task 5 at the top). The system’s initial distribution is
shown at t0, with subsequent desired target distributions reached at t[1,2,3].

Qsu =

{

0 , if species s does not have trait u
1 , if species s has trait u

We model the interconnection topology of the M tasks via
a directed graph, G = (E ,V) where the set of vertices,
V , represents tasks {1, . . . ,M} and the set of edges, E ,
represents the ordered pairs (i, j), such that (i, j) ∈ V × V ,
and i and j are adjacent. Edges denote the possibility to
switch between two adjacent tasks. We assume the graph G
is a strongly connected graph, i.e., a path exists between any
pair of vertices (in contrast to a fully connected graph, where
an edge exists between any pair of vertices), and we assume
the robots have knowledge of this graph. We assign every

edge in E a transition rate, k
(s)
ij > 0, where k

(s)
ij defines the

transition probability per unit time for one robot of species

s at site i to switch to site j. Here k
(s)
ij is a stochastic

transition rule. We impose a limitation on the maximum

rate of each edge with k
(s)
ij < k

(s)
ij,max. These values can

• Model for heterogeneous robot system
• Efficient optimization algorithm
• Formulation for adaptive control
• Real robot experiments
• Effects of diversity

Further work:
• Automatic generation of task requirements
• Continuous trait instantiations
• Foundations of diversity

Thank you for your attention.

prorok@seas.upenn.edu

Penn
Engineering

GRASP
Laboratory

General Robotics,Automation, Sensing & Perception Lab

