Adaptive Distribution of a Swarm of Heterogeneous Robots

Amanda Prorok, M. Ani Hsieh, Vijay Kumar

Workshop on On-line decision-making in multi-robot coordination IROS 2015

Introduction

How do we design *heterogeneous* multi-robot systems to maximize performance?

Diversity Metric

Design Paradigm

* Image credits: M. Egerstedt, Georgia Tech

One robot type cannot cater to all aspects of a task

Collaborative Perception

Collaborative Manipulation

Idea: A task needs certain capabilities

Approach

Robot community

- Species
- Binary traits

Tasks

- Need traits
- Switching

Problem Formulation

Redistribution of traits (capabilities) among tasks

System

Method

$$\frac{\mathrm{d}\mathbf{x}^{(s)}}{\mathrm{d}t} = \mathbf{K}^{(s)}\mathbf{x}^{(s)}$$

— for a large number of robots, model system as ODE

 $\mathbf{K}^{(s)}$ — transition rates for each species

$$\mathbf{Y}(t) = \mathbf{X}(t) \cdot \mathbf{Q}$$
 — system

$$\mathbf{Y}(t) = \sum_{s=1}^{S} e^{\mathbf{K}^{(s)} \star t} \mathbf{x}_{0}^{(s)} \cdot \mathbf{q}^{(s)}$$

— solution to the ODE

Method

$$\mathbf{E} = \mathbf{Y}^{\bigstar} - \sum_{s=1}^{S} e^{\mathbf{K}^{(s)}\bigstar\tau} \mathbf{x}_{0}^{(s)} \cdot \mathbf{q}^{(s)}$$

- error in trait distribution

1. minimize $\mathcal{J}^{(1)} = \|\mathbf{E}\|_F^2$

- basic optimization problem

2. minimize $\mathcal{J}^{(2)} = \mathcal{J}^{(1)} + \alpha \tau^2$ — explicit opt. of convergence time

3. minimize
$$\mathcal{J}^{(3)} = \mathcal{J}^{(2)} + \beta \sum_{s=1}^{S} \left\| e^{\mathbf{K}^{(s)} \tau} \mathbf{x}_{0}^{(s)} - e^{\mathbf{K}^{(s)}(\tau+\nu)} \mathbf{x}_{0}^{(s)} \right\|_{2}^{2}$$

- reinforcing steady-state

Example

Experiment

* Work submitted to ICRA 2016

Movie

CONTROLLING DIVERSITY TO MAXIMIZE PERFORMANCE IN A HETEROGENEOUS SWARM OF ROBOTS

Amanda Prorok M. Ani Hsieh Vijay Kumar

GRASP LABORATORY

submitted to ICRA 2016

Continuous Optimization

Fixed K:
$$\mathbf{K}^{(s)\star}, \tau^{\star} = \underset{\mathbf{K}^{(s)}, \tau}{\operatorname{argmin}} \mathcal{J}^{(3)}$$

Adaptive K:
$$\mathbf{K}^{(s)} \star (t), \tau^{\star}(t) = \operatorname*{argmin}_{\mathbf{K}^{(s)}, \tau} \tilde{\mathcal{J}}^{(3)}(\mathbf{X}(t_p))$$

$$\mathbf{X}(t_p)$$

Results

Approach

Effects of Diversity

 $\operatorname{rank}(\mathbf{Q}) = S \qquad \operatorname{rank}(\mathbf{Q}) < S$

$$\mathbf{Q} = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

All species are independent

There are dependent species

Effects of Diversity

Conclusions

- Model for heterogeneous robot system
- Efficient optimization algorithm
- Formulation for adaptive control
- Real robot experiments
- Effects of diversity

Further work:

- Automatic generation of task requirements
- Continuous trait instantiations
- Foundations of diversity

Thank you for your attention.

prorok@seas.upenn.edu

