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Abstract. This paper presents a human-safe navigation algorithm for shared human-robot workspaces,
based on the velocity obstacles paradigm. By extending the velocity obstacle paradigm with different
cost factors accounting for humans and robots, the approach allows human workers to use the same
navigation space as robots. It does not rely on any external sensors and shows its feasibility even in
densely packed environments. Experiments show that our approach leads to safer and smoother paths
at a small cost of additional traveled time and distance.
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1. Introduction
Current research in mobile robotics focuses more and
more on enabling robots and humans to share a com-
mon workspace. Two well known research initiatives
in this direction are the Factories of the Future and In-
dustry 4.0, which both have the goal to develop smart
factories with networked tools, devices, and mobile
manipulation platforms (e.g. the KUKA youBot).
Nowadays robots in manufacturing are typically

not designed to be mobile and human-safe. They are
placed inside cages and operation is interrupted as
soon as a human enters the safety zones. Current
solutions for mobile robots in manufacturing settings
are restricted to predefined paths, e.g., tracks on the
floor, or restricted to movement in a grid to ensure
easy navigation. Humans are not allowed to enter the
navigation zone of the robots in order to ensure safety.
Relying on predefined paths and grids for naviga-

tion is too restrictive and does not allow for a flexible
and generally applicable setup of a mobile multi robot
system. Ideally, robots should be able to plan their
paths through any open space and ensure safety with-
out any external limitations such as restricted zones.
Additionally, in an unstructured work-space there are
no traffic rules that restrict the navigation. To safely
navigate in such a shared multi-robot and human set-
ting, the robot system has to take into account that
the surrounding moving ’obstacles’ are essentially also
pro-active agents and thus aim to avoid collisions too.
Recently, some algorithms based on the velocity

obstacle paradigm were introduced, e.g. ORCA [1],
and have successfully been applied to multi-robot
collision avoidance [2, 3]. While these algorithms
provide guaranteed safety and even optimality for
the individual agents, there are still some limitations
that remain. Specifically, the algorithms calculate
the velocity that is closest to the preferred velocity
and still safe. This implies that the robots always

pass each other within only marginal distances. While
this approach is feasible in simulation, in real world
applications it is not possible to exactly control the
velocity of the robots. With only marginal distances
between the robots that pass each other, there is an
increased risk that the smallest error in control will
lead to a collision. An additional limitation is that
all agents, either human or robot, are treated in the
same way, while it would be desirable to have more
distance from humans than from other robots. Also,
if a robot knows that another robot is running the
same algorithm (e.g. by using communication), it can
make use of the assumption that the other robot will
partly take avoiding actions as well. Hence, the robot
can drive closer to that robot, while towards other
robots and in particular in the presence of humans
more distance is advisable.
In this paper, we introduce a pro-active local col-

lision avoidance system for multi-robot systems in a
shared workspace, that aims to overcome the stated
limitations. The robots use the velocity obstacle
paradigm to choose their velocities in the input space.
But instead of choosing only the closest velocity to the
preferred velocity, more cost features are introduced
in order to evaluate which one is the best velocity to
choose. This allows us to apply different weights or
importance factors for passing humans, other robots,
and static obstacles. Furthermore, we introduce a
smart sampling technique that limits the need to
sample throughout the whole velocity space. The
resulting algorithm is decentralized with low compu-
tational complexity, such that the calculations can
be performed online in real time, even on lower-end
on board computers. Our empirical evaluation shows
that the resulting paths of the robots are safer and
smoother, while not adding much overhead w.r.t. dis-
tance and time travelled. The evaluation also shows
that the approach leads to substantially less collisions
in very dense configurations.
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Figure 1. (a) A workspace configuration with two
robots RA and RB on collision course. They are de-
scribed by a position, radius and velocity (i.e. pA, rA
and vA for robot RA). (b) Translating the workspace
configuration into velocity space and the resulting
velocity obstacle (V OA|B) for RA.

The remainder of the paper is structured as fol-
lows: The next section introduces the velocity obstacle
paradigm and discusses the state of the art. Section 3
presents our new approach to improve safety in a
shared workspace environment. In Section 4, the algo-
rithm is empirically evaluated and compared against
the existing COCALU approach. Related work is re-
viewed in Section 5. Section 6 concludes the paper
and describes current and future work.

2. Background
2.1. Velocity Obstacles
The velocity obstacle (VO) was first introduced by
Fiorini et al. [4] for local collision avoidance and navi-
gation in dynamic environments with multiple moving
objects. In the following, we will introduce the basic
concept of velocity obstacles and some of its exten-
sions.

Let us assume a workspace configuration with two
robots on a collision course as shown in Figure 1a. If
the position and speed of the moving object (robot
RB) is known to RA, we can mark a region in the
robot’s velocity space that leads to collision under
current velocities and is thus unsafe. This region
resembles a cone with the apex at RB’s velocity vB,
and two rays that are tangential to the convex hull of
the Minkowski sum of the footprints of the two robots.
The Minkowski sum for two sets of points A and B is
defined as:

A⊕B = {a+ b|a ∈ A, b ∈ B} (1)

The direction of the left and right ray is then defined
as:

θleft = max
pi∈FA⊕FB

atan2((prel+pi)⊥·prel, (prel+pi)·prel)

θright = min
pi∈FA⊕FB

atan2((prel+pi)⊥·prel, (prel+pi)·prel)

where prel is the relative position of the two robots
and FA ⊕ FB is the convex hull of the Minkowski
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Figure 2. Truncation. (a) Truncation of a VO of
a static obstacle at τ = 2. (b) Approximating the
truncation by a line for easier calculation.

sum of the footprints of the two robots, in the case
of round robots, this is a circle with the sum of the
robots’ radii as exhibited in Figure 1b. The atan2
expression computes the signed angle between two
vectors. The resulting angles θleft and θright are left
and right of prel.

When the workspace is cluttered with many robots
that do not move or only move slowly, the apexes of
the VOs are close to or even at the origin in velocity
space; thus rendering the robots immobile, since the
whole velocity space gets invalidated. This problem
can be solved using truncation.

The idea of a truncating a VO can be best explained
by imagining a static obstacle. Any velocity in the di-
rection of the obstacle will eventually lead to collision,
but not immediately. Hence, we can define an area
in which the selected velocities are safe for at least
τ time steps (see Figure 2a). The truncation can be
closely approximated by a line perpendicular to the
relative position and tangential to the Minkowski sum
of the two footprints as shown in Figure 2b.

The velocity obstacle paradigm was extended to in-
corporate reciprocality to the reciprocal velocity obsta-
cle (RVO) [5]. This approach assumes that each agents
takes half the responsibility for the collision avoidance.
This result was further refined to the hybrid reciprocal
velocity obstacle (HRVO) [6] to overcome situations
in which the reciprocal velocity obstacle could lead
to reciprocal dances [7], since the sides on which the
robot wants to pass switches with each time step.
In order to execute the computed collision free ve-

locity, the robot has to be able to instantaneously
accelerate to any velocity in the two dimensional ve-
locity space. This implies that the velocity obstacle
approach requires a fully actuated holonomic plat-
form, able to accelerate into any direction from any
state. However, differential drive robots with only
two motorized wheels are much more common due
to their lower price point. Additionally, robots can
only accelerate and decelerate within certain dynamic
constraints.
If the acceleration limits and motion model of the

robot are known, a region of admissible velocities can
be calculated and approximated by a convex polygon.
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Figure 3. ClearPath enumerates intersection points
for all pairs of VOs (solid dots). In addition the
preferred velocity vA is projected on the closest leg
of each VO (open dots). The point closest to the
preferred velocity (dashed line) and outside of all VOs
is selected as new velocity (solid line). The next best
points are shown for reference.

These constraints can easily be added to the VO formu-
lation to be incorporated in the calculation of the new
velocity, by dynamically restricting the velocity space
to only achievable velocities. Another approach is
using non-linear velocity obstacles as presented in [8].
To incorporate the differential drive constraints,

Kluge et al. introduced a method to calculate the
effective center of a differential drive robot [9]. The
effective center represents a translation of the center
of rotation to a point that can virtually move into all
directions. Another method to handle non-holonomic
robot kinematics has been introduced by Alonso-Mora
et al [10]. This is based on the idea that every robot
can track a holonomic speed with an error, i.e. driving
an arc and then following the holonomic speed vector.

2.2. COCALU
The COCALU algorithm was introduced [2] to effi-
ciently compute collision free velocities in multi-robot
systems. It is based on ClearPath, introduced by
Guy et al. [11]. This algorithm is applicable to many
variations of velocity obstacles (VO, RVO or HRVO)
represented by line segments or rays. ClearPath fol-
lows the general idea that the collision free velocity
that is closest to preferred velocity is: (a) on the in-
tersection of two line segments of any two velocity
obstacles, or (b) the projection of the preferred ve-
locity onto the closest leg of each velocity obstacle.
All points that are within another obstacle are dis-
carded and from the remaining set the one closest to
the preferred velocity is selected. Figure 3 shows the
graphical interpretation of the algorithm.
In COCALU, the algorithm is further adapted to

incorporate sensing uncertainties by enlarging the
footprint using a localization uncertainty measure.
Assuming that the robot uses Adaptive Monte Carlo
Localization (AMCL) [12], the weighted particle cloud
can be used as an approximation of the probability
distribution of the robots’ location. By calculating the
Minkowski sum of the robots’ footprint and the convex
hull of the particle cloud, the robots’ localization un-
certainty can be taken into account in straight forward
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Figure 4. Increasing the footprint of the other robots
as one way to create more safety. However this also
reduces the available safe velocities to choose from
and could lead to potential problems in dense con-
figurations, where the whole velocity space becomes
unavailable.

manner. In order to prevent that the footprint en-
largement becomes too big, convex hull peeling is used
to remove particles from the set until a ε-threshold
is exceeded. This effectively limits the footprint en-
largement while still providing extra safety during
navigation.

2.3. Problems
As explained in the introduction, some problems and
limitations remain. For one, optimality can be defined
in many ways. In the case of COCALU, optimality
means driving as close as possible to the desired speed.
In many cases this implies that robots using this algo-
rithm pass each other close to zero distances, i.e. there
is no margin for error. In real life, where control of
the robot is not instantaneous and perfectly accurate,
this can lead to collisions. While COCALU implicitly
provides safety by enlarging the robots’ footprints by
the localization uncertainty, this is not an optimal
solution. Especially when the localization accuracy is
high, the point cloud converges to the actual robots
position and the safety region decreases. Thus we
need to explicitly take this into account.
A second limitation of the approach is that it is

perceived as uncomfortable or even unsafe by humans
when the robots pass unnecessarily close by. An intru-
sion of ones personal space is seldomly appreciated,
especially when it concerns a robot.

3. Towards human-safe pro-active
collision avoidance

Our algorithm has the same assumptions as COCALU.
The robots have to be able to sense velocity and
shape of other robots and humans. Since robot-robot
detection is a whole research field in itself, we rely on
communication between the robots. More specifically,
the robots use the same global reference frame and
constantly broadcast their positions via WiFi.
There are multiple ways to ensure that the robots

are passing with more distance to each other. One
straightforward idea is to virtually increase the size of
the robots’ footprints. This results in larger velocity
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Figure 5. Different cost functions. Yellow depicts
lower, i.e. better, and blue higher costs. The distances
to the preferred velocity (a) and current velocity (b)
as cost where further away yields higher cost; (c) and
(d) show the distances to the VOs as costmaps, where
points closer to the VOs yield higher cost.

obstacles and thus the robots will have more distance
between one another. However, this also drastically
reduces the safe velocity space as shown in Figure 4.
This approach marks more regions in the velocity
unsafe and therefore reduces the options to choose
from. It can lead to problems in dense situations,
when many other robots are present and the entire
velocity space is marked unsafe, while it still would
be possible to maneuver without collisions.

To overcome this problem, we use a sampling based
approach with multiple cost functions. This means
that the chosen velocities get evaluated not only by
their distances from the preferred goal velocity but
multiple other evaluation functions. Figure 5 shows
the result of different evaluation functions in the ex-
ample setting. The distances of the sampled velocity
against the preferred velocity but also against the
current velocity are shown. Additionally, the closest
distance to any velocity obstacle can be modeled as
negative cost. The resulting distance can be limited,
i.e. that points which are further away than a set
distance do not get scored higher. This can effectively
control the behaviour of the robot. Additionally, if we
assume that a velocity obstacle is induced by a human,
this can be weighted differently than the distances
from the other velocity obstacles. The effect is shown
in Figures 5c and 5d, where the right most velocity ob-
stacle is weighted with double the cost than the other
two velocity obstacles. Using this approach we can
model the personal space of a human by setting the
cost for intrusion very high up to a certain distance.
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Figure 6. Selecting the optimal velocity based on
different combinations of the costmaps and sampling
throughout the full velocity space. (a) All VOs are
weighted equally. (b) The VO on the right has addi-
tional weight.

For personal space, a distance of 50 cm is usually
regarded as applicable [13].

In order to select the optimal velocity, we can sam-
ple the velocity space and then evaluate samples based
on the weighted sum of the different costmaps. A ve-
locity sample that points inside a VO is disregarded,
since it is unsafe. Figure 6 shows the costmaps and
the resulting optimal velocity. As can be seen in Fig-
ure 6a, the resulting velocity is close to the originally
calculated optimal velocity when using ClearPath.
However, when the VOs are weighted differently, the
optimal velocity is in a different region of the velocity
space as shown in Figure 6b.

We can combine the ClearPath algorithm with the
above idea to incorporate a smarter sampling algo-
rithm. The ranked velocities calculated by ClearPath
are used as a seed (see Figure 3: points marked as
vopti), such that samples are only created in the vicin-
ity of these velocities. Figure 7 shows the idea of
this algorithm. The trade-off of this approach is that
it might miss the global optimum in favor of being
computationally faster.

An advantage when using a velocity obstacle based
approach is that we can easily have pro-active collision
avoidance, even when the robots are standing still.
When standing still, the preferred velocity is zero,
that can be evaluated using the same approach as
while driving. Thus, when staying still would result
in a collision, the robots using this approach will pro-
actively take actions and avoid the incoming robot
or human. This is of course only necessary when
the incoming robot is not already taking care of the
avoidance itself.
Lastly, we can also adapt the truncation factor to

improve the safety against other uncontrolled robots
and humans. A higher truncation time results in safer
velocities, since, as stated in Section 2, it determines
the time the chosen velocity is guaranteed to be colli-
sion free in the current configuration of the system.
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Figure 7. Applying smart sampling only around the
best voptcp points as calculated by ClearPath. (a) All
VOs are weighted equally. (b) The VO on the right
has additional weight.

4. Evaluation and Results
The presented algorithms are implemented in the
framework of the open source Robot Operating System
(ROS) [14]. As described above we rely on communica-
tion between the robots to broadcast their positions in
a common reference frame. The robots are controlled
with 10 Hz, and at each timestep the robots evaluate
the current position and independently choose their
preferred velocity.

We have evaluated our approach in simulation using
Stage [15, 16] and in real-world settings. Simulation
allows us to investigate the system performance using
many repetition and various extreme settings.
All experiments in simulation are run on a single

machine with a quad-core 3.4 GHz Intel i7 processor
and 16 GB of memory. Each setting is repeated 50
times and the results are averaged. Runs in which
collisions occurred or which exceeded a time limit of
60 seconds are excluded from the averages. The com-
pleted runs are split into seven bins, and the variance
of the batch means is used to calculate 90% confi-
dence intervals using the students t-distribution with
six degrees of freedom and α = 0.1. The simulation
are run in real time, since the message passing is an
essential component of the described approach. As
the ROS message passing uses real time serialization
and deserialization, increasing the simulation speed
would lead to inaccurate results.

We compare the original COCALU with the our
newly proposed COCALUsampling. A common sce-
nario for evaluation dense movements are a different
number of robots located on a circle (equally spaced).
The goals are located on the antipodal positions, i.e.
each robot’s shortest path is through the center of
the circle (see [1, 10]). We use a circle with a radius
of 1.7 meter in simulation. The goal is assumed to
be reached when the robots center is within a 0.15
meter radius of the true goal. We evaluate several per-
formance measures: a) number of collisions, b) time
to complete a single run, c) distance travelled and d)
jerk cost. The jerk cost measures the smoothness of a
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Figure 8. Results of the antipodal circle setting. (a)
Distance travelled, (b) time to complete, and linear
(c) and angular (d) jerk are shown.

path and is defined as:

Jerklin = 1
2

∫
...x(t) dt (2)

Jerkang = 1
2

∫ ...
θ (t) dt (3)

where x is the forward displacement of the robot, i.e.
the linear speed is ẋ and θ the robot’s heading, i.e. θ̇
is the angular speed.
For both algorithms we use truncation of the ve-

locity obstacles with τ = 10. For humans and uncon-
trolled robots, we increase the τ to 40. The ε = 0.1 for
the localization uncertainty is set to, thus we include
90% of the particles in our footprint enlargement.

All costmaps are included for the sampling approach
and weighted equally. In the cases where there is an
velocity obstacle induced by an uncontrolled robot
or a human present, the minimum distance to these
velocity obstacles is weighted double.

Figure 8 shows the results of the antipodal circle
setting. The boxes are the confidence intervals and
the errorbars show the standard deviation over the
50 runs. The distance travelled and time used are
longer for the new COCALUsampling when compared
to the original COCALU formulation, (Figure 8a
and 8b). This is to be expected, since the robots
deviate from the fastest path in order to improve
safety. However, it can also be seen that the resulting
paths are significantly smoother for the new approach.
The linear and angular jerk (Figure 8c and 8d) show
that especially for more robots, the sampling based
approach improves the smoothness of the paths. This
can be explained by the fact that with the original
COCALU , the robots are driving very close to the
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Figure 9. Sample trajectories for the antipodal circle
setting, with 6, 7 and 8 robots from left to right.
For the standard COCALU (a) and 8 robots, we can
see a collision between the robots with the blue and
purple traces. With COCALUsampling no collision
is happening, but the general distances between the
robots is larger.

other robots, leading almost to collisions. Especially
if the control is not perfect, some radical maneuvers
might be needed to get out the collision. Additionally,
the COCALUsampling approach specifically models
the smoothness of the path by taking the distance to
the current velocity into account.
Regarding the amount of collisions, with

COCALUsampling only in one run with eight
robots a “touch and go” collision occurred, while for
standard COCALU already for five robots “touch
and go” collisions occurred. With seven robots two
not resolvable collisions and with eight robots 14 not
resolvable collisions were recorded. That collisions
still do happen is mainly due to the limited update
rate of 10 Hz and the low fidelity of the simulator.
The localization uncertainty epsilon was set to 0.1, so
there is also a small chance that collisions happen,
when AMCL is unable to track the robots’ positions
well enough.

Additionally, since we are using truncation, we can
only guarantee safety of a velocity for τ = 10 timesteps.
This might lead to states where a collision is inevitable,
especially when using the original COCALU formu-
lation.
Some example trajectories of the two approaches

are exhibited in Figure 9. The top row shows the
results for COCALU and six, seven and eight robots,
and the bottom row shows corresponding trajectories
for COCALUsampling. The trajectories confirm the
results before, the trajectories with COCALU are
much closer together and even show a collision with
eight robots. The robots with the blue and purple
traces collided in a way that they could not resolve it.
For COCALUsampling, the trajectories are generally
more spaced from the center.
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Figure 10. Pro-active collision avoidance. The “un-
controlled” robot (blue trace) neglects the presence of
the other robots, so they have to move out of its way
to ensure safety.

To show how the pro-active collision avoidance
works, Figure 10 shows the trajectories of one “un-
controlled” robot passing trough a crowd of robots.
“Uncontrolled” in this experiment means that the robot
disregards the existence of the other agents and just
drives straight, without taking any avoiding measures.
Thus, the five robots in the center have to pro-actively
move out of the way in order to ensure safety. The
robot with the blue trace, is approaching while the
pink and green traced robots start moving out of the
way (top-left). As soon as the uncontrolled robot
has passed, pink returns to its position (top-right).
The same happens with the green robot. The final
positions and complete trajectories can be sees in the
bottom-right corner.

4.1. Human-robot experiments
We evaluated the performance in a the real-word set-
ting using up to three differential drive Turtlebot 2’s1.
In addition to the usual sensors, they are equipped
with a Hokuyo URG laser-range finder to enable bet-
ter localization in large spaces. All computation is
performed on-board on a Intel i3 380UM 1.3 GHz
dual core CPU notebook. Communication between
the robots is realized via a 2.4 GHz WiFi link us-
ing a UDP connection and the LCM library [17].
For human detection we use the SPENCER project
code2. A video showing the results can be found here:
https://youtu.be/hcd6phm2ocs.

1For more information see: http://turtlebot.com.
2https://github.com/spencer-project/spencer_people_

tracking
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5. Related Work
This work introduces an local collision avoidance ap-
proach that deals with the problem of robots sharing
the same workspace as humans. An overview over ex-
isting (global and local) approaches for human aware
navigation [13] shows that the main focus of current
research is about the comfort, naturalness and socia-
bility of robots in human environments. This usually
entails only one robot acting in a group of humans,
i.e. as a personal assistent. However our approach
is aimed at a different distribution of agents, namely
many robots navigating together with many humans
in the same shared workspace.

An example of the single robot, multi-human navi-
gation approach is the stochastic CAO approach [18],
which models the discomfort of humans and uses the
prediction of human movement to navigate safely
around people. Another similar approach is described
in [19]. It is based on layered costmaps in the configu-
ration space and it also describes a user study where
gaze-detection was used to determine the intended
heading of the humans to update the costs. This
layered costmaps idea is similar to the multiple evalu-
ation functions in our approach; however it is based
on the configuration space, while our approach uses
the velocity space. This approach does not explicitly
cover the dynamic nature of moving obstacles.
Other approaches for multi-robot collision avoid-

ance use auctions [20] at a rather high communica-
tion overhead; or stigmergy [21–23], which relies on
pheromones that are hard to apply in a real world set-
ting. Additionally, these approaches do not implement
robot-human avoidance.

6. Conclusions and future work
In this paper, we introduced a pro-active local colli-
sion avoidance system for multi-robot systems in a
shared workspace. It improves upon previous work
by incorporating different importance factors for hu-
mans, other robots, and static obstacles. Instead of
only relying on calculating the optimal velocity based
on the preferred velocity, we use Monte Carlo sam-
pling throughout the velocity space and evaluate the
samples using multiple different cost functions. We
presented a smart sampling technique, using the pre-
viously computed velocities from ClearPath as seeds,
so that we can limit the sampling to only interesting
regions in the velocity space. The resulting algorithm
is decentralized with low computational complexity,
that can be run even on low-end robots, as for instance
the Turtlebot 2.
In a setting where the robots have to drive to the

antipodal positions on a circle, we have evaluated our
adaptations and compared against the original CO-
CALU formulation, showing that it results in smoother
and safer at the small cost of slightly longer paths.
We also presented how robots can pro-actively avoid
collisions, by showing an “uncontrolled” robot driving
through a crowd of other robots. In our real world

settings, up to three Turtlebots avoid a human shar-
ing their workspace. Current work includes further
comparisons to evaluate the influences of the different
costmaps and the effect of different weights.

The approach can be generalized to any input space,
using for instance the Generalized Velocity Obsta-
cles [24], or the Acceleration Velocity Obstacles [8].
Additionally, this approach can be combined with ex-
isting approaches that use trajectory rollouts as for
instance the Dynamic Window Approach [25], in a
straight forward manner. Adding human gaze detec-
tion to improve the prediction of the human velocities
is also a promising direction for future work.
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