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ABSTRACT. The observation and recognition of complex scenes can benefit from the use of multiple
mobile cameras. In this paper we study a fleet of mobile robots where each robot controls the point
of view of its embedded camera. The objective is to manage the cooperation between the robots to
find a joint position that maximizes the joint observation of a scene, defined as the activity of one
person. It is assumed that the robots can communicate but have no map of the environment and
no external localisation. This paper presents a spatial concentric modeling of the environment well
adapted to the navigation of two-wheeled non-holonomic robots. To reduce the complexity of finding
the best solution in the space search, we propose an incremental mapping based on this model and
some heuristics to search for the optimal observation in an online context. Experimental results in
simulation are presented that show in particular the anytime aspects of the proposed algorithms.

KEYWORDS: Multi-robot coordination, Mapping, Scene observation, Multi-robot exploration.

1. INTRODUCTION

Many robotic applications where it is required to
observe or recognize activities of one or more humans
must be robust to complex perturbations as occlusions
or cluttered environments. Providing multiple points
of view on a complex scene enables wider coverage
area and can reduce the issue of occlusions. However
it could be not possible or difficult to cover a large
zone with a set of static cameras, and even impossible
to deal with dynamic occlusions or lighting changes.

We propose in this article to address the problem
of active distributed recognition with mobile cam-
eras, i.e. cameras embedded on mobile robots. The
context of this work is the CROMH]] project that
concerns human activity recognition with a fleet of
mobile robots. Each robot is autonomous and embeds
a camera whose viewpoint is controlled by the robot.
Possible applications of such systems are human mo-
nitoring , emergency assistance, cobotics, ...

In the CROME project, the objective is to exploit
the mobility of the robots so that they adapt their
positions to find the spatial configuration that maxi-
mizes the joint recognition of a human activity. Active
distributed recognition provides the advantages to be
robust to individual robot failures and to be able to
adapt to dynamic changes in the environment. But
the use of multiple mobile robots also requires the
robots to communicate and coordinate their move-
ments. The main challenge is providing cooperation
between robots when each individual point of view
does not allow a satisfactory recognition, e.g. because
of the presence of occlusions. The joint recognition of

LCoordination of a mobile robots fleet for multi-view analysis
of complex scenes.

a human activity must be done by integrating informa-
tion collected by the fleet. The robots must coordinate
to obtain the most informative and complementary
observations. The objective is then for the robots to
find a joint position that maximizes the observation
and joint recognition of a complex scene e.g. human
activity.

In this paper, we consider realistic and challenging
assumptions about knowledge and perception of the
robots in such a task of observation. First, we con-
sider that robots have no map of the environment,
they can only know in which direction the scene could
be observed. The environment holds obstacles that
can prevent some displacements and observations of
the scene (i.e. occlusions). Second, robots have no
external localisation, as a GPS, they can only know
their relative position to the observed scene, that is
distance and orientation towards the scene. Their per-
ception is limited to a local camera view. As we want
to explore cooperation between robots, we assume
the robots can communicate between them. The last
main assumption concerns the scene to observe. We
consider, in this paper, that the scene is defined as the
activity of one person, performing a sequence of tasks
in a same place. We limit our objective to observe the
totality of the body (skeleton identification) and to
be able to detect task changing.

Observing under such assumptions, 7.e. in an un-
known environment, requires to explore and /or build a
map of the environment. Moreover, optimizing the ob-
servation requires to move and coordinate the robots
while the task of the person could change. In this pa-
per we focus on dealing with the complexity involved
by the combination of these different dimensions: the
environmental constraints, the number of robots and
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the changes of the scene. In order to deal with such
a challenge, we propose to explore an incremental
mapping of the environment, in parallel of dealing
with the observation task. As we want to avoid long
processes of exploration or learning, we propose to
study anytime algorithms, as they can always give a
solution which can be improved by the time.

In the following, we first discuss related works on
tracking and recognition with mobile cameras. Section
presents the problem modeling and its complexity.
Then we detail the incremental mapping we propose
to represent the environment and the heuristic ap-
proaches we used to search for the optimal joint po-
sitions of the robots. Section [f] presents experiments
and results. Finally, section [7] concludes this paper
and proposes some perspectives.

2. RELATED WORK

There has been an increasing amount of research over
the last decade on using a network of fixed cameras to
detect, track and recognize objects or persons [IJ, [2].
For instance, merging the information provided by
several cameras based on 3D occupancy grid can be
used to track and detect falls of elderly people at
home [3]. Communication to obtain a consensus in
a distributed camera networks can also be used to
perform human activity recognition [4]. Although a
set of fixed cameras can obtain global views of the
scene, as cameras are static, they cannot deal with
non-covered zones or occlusions.

Recent works are interested in using mobile cameras
that can move to adequate places to cover blind spots
not observed by any fixed camera and react to chang-
ing conditions as lighting or dynamic obstacles. In the
URUSE| project [5], the objective is to assist and guide
people in urban settings by combining the information
from on-board cameras on mobile robots and a set of
fixed surveillance cameras. Sensors embedded in the
environment can complement the narrow perception
of the robot’s camera, and the mobile robot can cover
places occluded from the camera network. In this
project, the authors focus on the fusion of sensory
information from the different sensors to overcome
tracking failures [6] and to manage active coopera-
tive perception [7]. Active perception means that the
robot selects actions taking into account their effects
on its sensors, in particular to improve their perfor-
mance. Cooperative active perception involves the
fusion of information from multiple sensors and multi-
ple cooperating decision makers. However these works
only focus on the cooperation between one robot and
the fixed cameras, and do not consider the issue of
coordinating multiple mobile robots to improve the
perceptual information available to the system.

In Giusti et al. work [8], a group of mobile robots is
used to cooperatively sense and classify an entity of in-
terest. The proposed scenario is the distributed visual

2Ubiquitous Networking Robotics in Urban Settings.

Obsge e

T e
| ~_/ - > i
' AT A / ?

RObOy\\Camgradin /,,r'
Robot S~

FiGure 1. Navigation model based on circles

recognition of hand gestures. The swarm positions
itself along a semi-circle centered on the target scene.
Robots, equipped with cameras, process hand images
from multiple points of view. Then each robot clas-
sifies individually the hand shape and a distributed
consensus protocol allows the swarm to reach as a
whole a final decision about the issued gesture. This
work focuses on the distributed recognition and infor-
mation sharing between robots. The navigation and
coordination of the robots is very simple and is not
used to improve the recognition. Indeed, although the
robots are mobile, once they are positioned uniformly
in a semi-circular arc, they maintain this formation.
Moreover, the environment is assumed to be without
obstacles, which facilitates the navigation.

It has been shown, in many works, that using effi-
cient coordination processes in a fleet of mobile robots
equipped with sensors can improve the exploration
and the mapping of an unknown environment, see e.g.
[9H11]. However, this work does not aim to track or
recognize the activity of a human person but to create
a map of the environment by using the information
of multiple mobile sensors.

3. PROBLEM MODELING

We first present a spatial concentric modeling of the
environment, which is well adapted to the navigation
of 2-wheeled robots and reduces the spatial complexity
of our problem. We then define robots observation
and the quality of the (joint) observation.

3.1. NAVIGATION AROUND THE SCENE

The robots need to navigate through the space around
the scene to find an optimal joint position for the
observation. The navigation of the fleet requires to
consider several navigation constraints. Each robot
has to avoid obstacles while moving, and to coordinate
with others to avoid collisions. Moreover, robots must
track the scene and keep it constantly in their field of
views, while remaining some distance away from the
scene to observe it as a whole.

In order to reduce the complexity of dealing with
these different constraints, we propose to consider a
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FiGURE 2. Turtlebot navigation on circle around
a scene, see the video link http://liris.cnrs.fr/
Imatigno/videoDemoCROMEL.html,

limited navigation space around the scene composed
of concentric circles centered on the scene. So we
define several circles, at spaced radius, that robots
follow to move in two directions (forward/backward),
as illustrated in fig. [I]

The primary interest of this approach is to main-
tain the orientation of each robot’s camera towards
the scene. This requires to fix the camera orientation
perpendicular to the forward direction of the robot.
The second interest is that moving along a circle tra-
jectory is easy for a mobile robot, in particular for a
two-wheeled non-holonomic robot. Finally, consider-
ing circles simplifies the interaction and coordination
of the robots and reduces the risks of collisions. In-
deed, no collision can arise between robots navigating
on different circles, and collisions on a circle are easy to
predict and avoid. Concerning obstacles, robots have
only to consider obstacles that are on circle trajecto-
ries. It is then possible either to bypass the obstacle
and continue the circular navigation, or to limit the
navigation on circular arcs delimited by obstacles.
Such a navigation model has been experimented with
Turtlebot 2 robots, as illustrated in fig. 2}

Given the navigation model based on circles that we
have described previously, we can define the position
of a robot.

Definition 1. The position of a robot i is defined
by (d;,o;) where d; is the distance of the robot i to
the scene, and o; is the angle between the horizontal
line passing through the scene and the line connecting
the scene to the robot.

This is illustrated in fig. [] In order to reduce the
spatial complexity due to the navigation in a continu-
ous environment, we propose a discrete representation
of the positions of the robots. To this end, we de-
fine a set of C concentric circles, at spaced radius
and with diameters within the range [D;, Ds]; and
a set of K sectors. Sectors allow to divide the cir-
cular space centered on the scene, into slices with
identical central angle of 27” With these elements
we can determine a set of contiguous cells where the
robots are moving to explore and observe the scene
(cf. fig. [3). At any position (d;,0;) of a robot i is
associated a unique cell ¢; = ([d,, dp]; [04, 0b]) such

Robot i

Circle /.\\

" a;
06%% di \‘/m *
B

’. ...........................
Py A

A\

Occlusion

FIGURE 3. Spatial discretization in cells with C =3
circles and K = 8 sectors.

that d; € [dq,dp[ and o; € [04,05]. As well, at any cell
¢ = ([da,dp]; [0, 0b]) is associated a unique position
(dg, Ze22). The number of circles and sectors will
affect directly the complexity of the discretization in
terms of number of cells to store and to explore, that
is discussed later.

3.2. QUALITY OF THE OBSERVATION

The observation of a robot i is the information about
the scene that is perceived by the robot. We define
0;(¢) the observation of the robot ¢ when it is in the
cell ¢, i.e. at the position associated to the cell c.

In this work, we are interested in the observation of
human activity. In a first stage, we limit our objective
to observe the totality of the body, that can be char-
acterized by skeleton data obtained from sensors like
Kinect camera. Skeleton data defines a set of body
joints, the positions and orientations of each joint in
the referenced frame of the camera, and a confidence
value for each joint equal to 1 when the tracking of
the joint seems to work and 0 if the tracking fails and
the output is uncertain. So we choose to represent the
robot’s observation of the scene by a binary vector
of size equal to the number of body joints tracked by
the camera.

Definition 2. The quality of an observation o;
made by a robot i is defined as:

o]

aoi) = o] (1)

where o! is the jth element of the vector o;.

The quality of an observation is the number of body
joints accurately tracked by the robot. The following
example illustrates this computation:

01 =11,1,1,0,0,1,0,0,0,1,0,1,1,0,0], g(oy) =7

The quality varies depending on the pose of the human
body (i.e. from side-on), the occlusions or lighting
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changes. By extension we define the quality of a
cell as the quality of the observation made from the
position associated to that cell. This determines if the
view angle from that cell enables to observe accurately
the scene.

The quality of an observation is a local information.
To quantify the quality of the observation made by
the group of robots, we define the quality of the joint
observations.

Definition 3. The quality of the joint observation,
or joint quality noted Q, is defined as the quality
of the component-wise maximum of the observation
vectors of the robots:

Q=q( \/ o) (2)

i€[1,N]

where N is the number of robots and \/ is a logical
OR between the elements of observation vectors of the
robots.

The objective is then for the robots to find the joint
positions that maximize the joint quality. A key point
is that maximizing the joint quality is not decompos-
able into maximizing the individual quality, which
could lead to redundant information, but it requires
to find the best complementarity of information. For
instance two robots which maximize their individual
qualities can have a low joint quality because they ob-
serve identical joints; and two robots with non optimal
individual qualities can have a high joint quality if the
individual observed joints complement one another.

3.3. COMPLEXITY

The state space to explore is the set of joint positions
of the robots to find those that maximize the joint
quality. This set is boundedﬁ by (C x K)N where
C, K and N are respectively the number of circles,
sectors and robots. Some examples of the size of the
state space are given in section[6] It is clear that the
state space to explore is exponentially large with the
number of robots. A complete exploration can take
a very long time in simulation (cf. and is barely
impossible to consider with real robots.

To handle this space complexity and avoid long pro-
cesses of exploration, we define a strategy combining
two approaches. We consider initially few cells that
will be divided incrementally; and we define heuristics
to guide the exploration in the state space.

4. INCREMENTAL MAPPING

One assumption of our work is that the environment
is not known in advance by the robots, so they have
to explore it and to build a map to use data gathered
during their exploration. One common technique for
map representation is to use occupancy grid maps.
Introduced by Elfes [12], an occupancy grid represents

31t can be reduced if some cells are inaccessible because of
obstacles and if only one robot per cell is allowed.
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FIGURE 4. Example of a representation with three
initial cells and their successive divisions. The blue
circle at the center represents the scene.

L

FIGURE 5. Example of the incremental construction
of our tree structure given the divisions of the fig. [4]
Each of the three initial cells is a root of a quadtree.

the environment with a set of cells (usually squares or
hexagons), each with an occupancy probability that
determines the probability that the cell will be occu-
pied by an obstacle. The occupancy probability is
initialized to 0.5 for each cell and updated by robot’s
sensor readings that indicate whether the robot ob-
serves the cell as occupied or unoccupied. In our work,
the occupancy grid is based on the cells derived from
our discretization in circles and sectors (cf. §3.1)). To
each cell of the map is associated :

e an occupancy probability
e a quality of the observation made from that cell.

The robots have to explore the cells to update occu-
pancy and quality information of each cell.

We propose in this work to build a map by an
incremental division of the cells. The idea is to
have at the beginning a coarse representation of the
environment, with few circles and sectors that define
initial cells. Thus each initial cell covers a large area of
the space around the scene, as illustrated on the image
at the top left of the fig. [d] where three initial cells
are defined at the beginning by one circle and three
sectors. Then the robots can divide each cell into sub-
cells, and can recursively split the obtained sub-cells
(cf. fig. . As each cell is associated with a position,
this will increase the number of accessible positions.
The objective is to refine the discretization only in
interesting areas of the environment. The robots will
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split cells where an accurate exploration could improve
the joint observation quality. Conversely, some cells
must not be splitted too finely, e.g. because they are
behind obstacles. The observation of the scene from
any positions in such a cell is occluded.

There are several interests in building such an in-
cremental representation. The major one is to handle
the space complexity and the time to explore the en-
vironment, by limiting the number of cells to explore.
The quality of the joint observation of the scene is
also refined over time as the robots explore more and
more points of view.

To manage the incremental mapping of the envi-
ronment while building an occupancy grid we define
an appropriate data structure which is based on a
quadtree. A quadtree is a kind of tree in which each
non-leaf node has four children [I3]. In our structure
each initial cell is a root of a quadtree that will be
built recursively. Each cell is stored as a node of the
quadtree and each cell can be again divided into four
cells, and so on, as illustrated in fig. To store
and update the occupancy probability of each cell,
we use a probabilistic quadtree as in [I4] where
each node (or cell) of the quadtree has an occupancy
value. The occupancy value of leaf nodes is initialized
from the values of the parents’ nodes and updated
by robot’s sensor readings. The occupancy value of
non-leaf nodes is the mean of the values of the four
children nodes.

5. HEURISTIC APPROACHES TO SEARCH
FOR OPTIMAL OBSERVATION

While the robots can build a representation of the
environment, we need an algorithm for the robots to
explore and find a joint position that maximizes the
observation joint quality.

As the scene to observe is dynamic we propose to
move only one robot at a time. This allows the group
to better qualify the scene dynamic. If several robots
move together, it will be difficult for them to know if
the changes observed about the scene are caused by
the scene or by the modification of their point of views.
In contrast, if one or more robots remain stationary
while another is moving around the scene, then it will
be easier for the group to detect potential changes in
the scene as a change in the activity.

In the following, we will explain the two major steps
of our approach to find the optimal observation. The
first one is to choose which robot must move by com-
puting a heuristic based on the marginal contribution
of each robot. The second step is to determine which
action must be done by this robot, moving or spliting
a cell, following an exploration heuristic.

5.1. MARGINAL CONTRIBUTION OF A ROBOT

To choose the robot that has to move, we introduce
the notion of marginal contribution of each robot, in
reference to the marginal contribution of a player to
a coalition in the Shapley value [15].

Definition 4. The marginal contribution of a

robot i in the joint observation of N robots is noted

w; and is defined as:
w; = q(0;) — q(o; N \/ 0j). (3)

JE[LN] j#i

This corresponds to the part of the observation that
robot ¢ is the only one to see.

Consider the following example, where three
robots have the respective observations, qualities and
marginal contributions:

o1 =1[1,1,1,1,1,1,0,1,0,1,1,1,1,1,0], g(o1) = 12
02 = [1707 1a la 1; 17071a Oa 17 17 17 1a 13 O], q(OQ) =11
03 =10,0,0,0,0,0,1,1,1,0,0,0,0,1,1], q(o3) =5

wy =1, we =0, wg3 =3

The robot 3 is situated in a cell with a low individual
quality (5), but it is the only one robot in the fleet that
observes some parts of the scene, so its contribution
is high (ws = 3). Even if the robots 1 and 2 have
high qualities and a good visibility of the scene, their
contributions are low because they observe identical
parts of the scene. So their observations are redundant
and the robot 2, which have the lowest contribution,
should move to find a more complementary point of
view to improve the joint observation of the team.

Indeed, a key point is that maximizing the joint
quality is not decomposable into maximizing the indi-
vidual quality, which could lead to redundant informa-
tion, but it requires to find the best complementary
information.

This analysis motivated the definition of an heuristic
to select the robot that must move. We simply select
the robot with the lowest marginal contribu-
tion. Moving only this robot offers the advantages of
minimizing the decay in the current joint quality and
maintaining the group configuration stable.

5.2. EXPLORATION HEURISTICS

Given the space complexity of our problem (cf. ,
we propose to use some metaheuristics to efficiently
explore the state space while escaping local optimum
solutions.

Once the robot with the lowest contribution has
been chosen, we use a metaheuristic to make a trade-
off between exploration and exploitation. Exploration
consists in moving to unknown cells to advance the
mapping while exploitation consists in moving to
known cells to optimize the joint observation. An
action of exploration is for a robot to visit an adja-
cent and unknown cell to gain new information and to
avoid possibly the team remaining in a local optimum.
An action of exploitation is for a robot to move
to the best adjacent celﬂ or to split its current cell
if it is already the best one. Thus the cells that are

4The cell that maximizes the joint quality.
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potentially interesting for the observation of the scene
are divided and explored more accurately.

In this paper, we consider two standard and well-
known metaheuristics, which are Simulated Annealing
(SA) [16] and Tabu Search (TS) [I7]. At each step of
SA, the exploitation/exploration trade-off is calculated
with a probability that depends on a temperature
parameter, which is gradually reduced during the
process. TS performs a pure exploitation but uses the
history of the search to navigate through the search
space. It keep tracks of a short-term set of the last
visited cells in a tabu list, which is used to forbid the
visit of the cells in the tabu list.

Algorithm [T] presents the main steps of our approach,
where the metaheuristic is one of the input data. This
version of the algorithm assumes that communications
between robots are perfect and unlimited.

Algorithm 1: Search for the optimal observation

Data: The set of N robots, the number of steps
T, a metaheuristic

Result: Q* the best joint quality found

Q*+—0t+0

while t<T do
t+—t+1

forie[l,..,N] do

| Recover o;
Compute the joint quality @
QR +— mazx(Q,Q*)
forie[l,..,N] do

| Compute w;

weakRobot < arg min w;
i€[1,N]
weak Robot chooses an action (move or split)
L weakRobot executes the selected action

It is is composed of three main steps: (1) determine
the observation the robots make of the scene. This
allows to compute the joint quality of their joint posi-
tion; (2) choose, among all robots, which one is the
least usefull; that is, the one without whom the joint
quality would be the least degraded; (3) move this
least usefull robot, according to one of the metaheuris-
tics presented above.

6. EXPERIMENTS

6.1. SIMULATOR

To conduct experiments, we first designed a simu-
lator. The aim of this simulator is twofold: (i) to
allow to run a large quantity of experiments in order
to test the validity of our approach, (ii) be realis-
tic enough to properly modelize key features of real
mobile robots and real environment. On one hand,
assumptions were made to simplify the implementa-
tion, e.g. we consider that robots’ motion around the
scene is perfect — that is, robots can move along circles
without trajectory errors. We also assume that robots
are equipped with sensors allowing them to remotely
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(a) Environment A.

(b) Environment B.

FIGURE 6. Two different environments.

Env. A Env. B
Best possible joint quality 15 15
# Circles 8 8
# Sectors 24 24
# Cells 192 192
# Obstacles 27 31
With 3 robots :
# Possible joint positions | 1,949,476 | 1,848,447
# Optimal joint positions 35,457 6,608

TABLE 1. Configuration of environments A and B.

detect nearby obstacles. Communications between
robots are also supposed to be instant and errorless.
On the other hand, we simulate noise in sensor (cam-
era) information when performing the perception task
of the robots. The observation made by a robot will
thus varies from the corresponding real scene.

We generate the observation vectors, i.e. skeleton
information composed of 15 body joints, by using a
technique called ray tracing [18]. Virtual rays — one
per sector, coming from the center of the scene — carry
the observation vectors and assigns to each cell of a
same sector a common observation — while considering
that obstacles may prevent the light coming from the
scene to reach the sensors of a robot. Fig. [6] shows
examples of ray tracing in environments containing
some obstacles. They also show cells from which the
scene is visible (green cells), cells from which the scene
is not visible (white cells) and cells containing obsta-
cles (black cells). Different shades of green indicate
different local qualities of observation: the greener the
cell, the better the local observation. The ray tracing
is designed in such way that it’s not possible for one
single robot to find a cell from which it can see the
full joint observation.

Once the ray tracing is generated, it remains fixed
during the execution of the exploration algorithms.
Note that the robots don’t have direct access to the
generated environment: it is only used to assign ob-
servation vectors and deal with obstacles. Instead
of that, they build their own representation of the
environment as their exploration of the space goes on.

6.2. EXPERIMENTAL SETTING

We perform our experiments in two different environ-
ments, presented in fig. [f] Experiments are done
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using 3 robots and 3 initial cells. We neglect noisdﬂ in
observations. Table [I] provides some information con-
cerning the state space of each of those environments,
illustrating the difficulty of the problem.

We measured that the exhaustive search of the
optimal joint positions takes about 3.40 minutes for
each environmentﬂ At first glance, it seems that
environment B is more difficult than environment A.

The size of the tabu list is 5. The temperature for
SA algorithm is initially fixed to 0.6, with a decreasing
rate of 1%. We run each algorithm 100 times. We
evaluate the quality of our algorithms by measuring
the number of times each algorithm reaches the best
possible joint quality among those 100 experiments.
One experiment consists of either 100, 200 or 300 steps.
One step corresponds to an action, that is a robot
move or split a cell. The two exploration heuristics
are compared to a random algorithm, in which a robot
and its action are randomly chosen at each step.

6.3. RESULTS

A video showing the incremental exploration and map-

ping of the robots can be found at http://liris!

cnrs.fr/lmatigno/videoDemoCROME2. html.

Fig. [7] and [8] present our results for experiments
in environments A and B. In both of those, our ap-
proach with TS and SA algorithms outperforms the
random algorithm. In environment A, all three algo-
rithms tested behave the same way: the more steps
they are given, the more likely they are to find the
best possible quality. For instance, TS finds the best
possible quality 47 times out of 100 experiments (47%
efficiency) with only 100 steps. But with 300 steps,
its efficiency goes up to 81%; while random goes from
28% to 53%. SA performs similarly as TS, although
a little less efficiently.

As intuited, environment B is found to be slightly
more difficult, as a random exploration hardly finds
good joint positions, even with a large number of steps.
Actually, unlike environment A, randomly wander in
the space of environment B does not insure that, with
more steps, we will get a better solution. This can be
explained by the presence of structures looking like
walls, preventing from going from one area to an other
without having a good exploration strategy. Yet, SA
and TS reach efficiencies close to the ones obtained in
environment A. More, in just 100 steps, SA finds every
time a best joint quality equal to 14 or 15, while it is
the case in only about 50% of the experiments with
the random algorithm. This illustrates the anytime
aspect of our approach, where TS and SA, unlike
random, find a good joint quality even in few steps
and improve their results with more steps.

Finally, Table [2| presents the average length (steps),
for each algorithm, to find for the first time the best
possible joint quality. It clearly appears that TS is

5As noise can randomly improve the quality of a joint ob-
servation, taking it into account would skew our results.
6Using a 2.4GHz Intel Xeon E5 Quad-Core - 2GB RAM.

Env. A | Env. B
SA 478.18 | 703.16
TS 258.6 | 196.03
Random | 720.24 | 1034.91

TABLE 2. Mean steps before finding the best possible
joint quality for the first time.

the most efficient heuristic — among those tested — as
it is the fastest to find the optimal joint quality in
both environments. Note that performing 196 actions
is very few compared to the state space size, and it
represents also a reasonable time for experiments with
real robots.

7. CONCLUSION

We presented an original spatial concentric modeling
of the environment, serving as a base for an incre-
mental mapping. This incremental mapping allows to
explore promising areas of the environment while keep-
ing complexity reasonable. We also introduced the
notion of marginal contribution of a robot, represent-
ing how useful a robot is for the team. This notion can
easily be extended from the frame of the observation
task to a much larger multi-agent framework.

This early work and results reveal many perspec-
tives. First we would like to test how our method cope
with noise and errors in robot movements, localization
and perception. We intend also to test the ability of
the system to detect activity changing. We proposed
to move only the robot with the lowest contribution
to better qualify the dynamic of the scene. The robots
that remain stationary will have to find a consensus
about whether or not the activity has changed. Once
they agreed on a change, exploration of the cells must
be thrown again e.g. by increasing the temperature pa-
rameter in the simulated annealing method. Another
perspective is to implement our method on real robots.
We have already experimented an exhaustive search of
the best joint quality with a navigation model based
on circles (cf. fig. . We intend to extend this work
by adding an incremental mapping of the environment
and the use of our heuristics to search for the optimal
observation in an effective and online way.
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