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Abstract. In this paper the formation control of a multi-robots system is investigated. The proposed
control law based on Lie group theory, is applied to control the formation of a group of unicycle-type
robots. The communication topology is supposed to be rooted directed acyclic graph and fixed. Some
numerical simulations using Matlab are made to validate our results.
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1. Introduction
The various ways to control and coordinate widely a
group of mobile robots have been studied in recent
years and brought a breadth of innovation, providing
a considerable attention for the potential applications,
such as flocking systems control, surveillance, search
and rescue, cooperative construction, distributed sen-
sor fusion, etc. When comparing the mission outcome
of a multi-robot system (MRS) to that of a single
robot, it is clear that multiple robots cooperation can
perform complex tasks that would otherwise be impos-
sible for one single powerful robot to accomplish. The
fundamental idea behind multi-robotics is to allow the
individuals to interact with each other to find solutions
of complex problems. Each of them senses the relative
positions of his neighbors, and achieves the desired
formation by controlling the relative positions [1–3].
In formation control, different control topologies can
be adopted depending on the specific environment
and tasks. Theoretical views of MRS behavior are
divided between centralized and decentralized systems.
In a centralized system, a powerful core unit makes
decisions and communicates with the others. In the
decentralized approach, the robots can communicate
and share information with each other [4]. We will
focus on the distributed system control due to its
advantages such as feasibility, accuracy, robustness,
cost and so on.

Many studies have been devoted to the control and
coordination of multi-agent systems and multi-robot
systems (e.g. [1, 4–9]). Some of these results have
been used to control vehicles (holonomic, nonholo-
nomic mobile robots,. . . ). In this paper, our goal is to
control a group of unicycle robots to achieve a desired
formation. Motivated by the references [10–14], we
focus on the rigid body with kinematics evolving on
Lie groups which is based on regarding the set of rigid
body posture as the Lie group SE(2) which leads to
a set of kinematic equations that are expressed in
terms of standard coordinated invariant linear opera-
tors on the Lie algebra se(2). This approach allows
a global description of rigid body motion which does

not suffer from singularities, and provides a geometric
description of rigid motion which greatly simplifies the
analysis of mechanisms [10]. The work [1] proposed
an elegant control law based on Lie algebra theory for
consensus of multi-agent system which has the holo-
nomic constraints, while nonholonomic constraints are
not considered. In [12], Lie algebra is used to study
the path following control of one mobile robot. In [15],
distributed formation control of multi-nonholonomic
robots is studied, however the the control law is leader-
follower approach and multi-leader case is not con-
sidered. In this paper, Lie group method is used to
control multiple unicycle-type robots. The communi-
cation topology is defined as rooted directed acyclic
graph (DAG). Due to the nonholonomic property of
this type of robot, a new local control law is proposed
to make the nonlinear system converge to the desired
formation.

The outline of this paper is as follows. In Section 2,
some preliminary results are summarized and the
formation control problem for a group of unicycle-type
robots is stated. In Section 3, a formation control
strategy is proposed and the stability is analyzed.
The simulation and results are given in Section 4.
Concluding remarks are finally provided in Section 5.

2. Preliminary and problem
statement

2.1. Lie groups
Definition 1 [[10]]: A manifold of dimension of n is
a set M , which is locally homeomorphic to Rn. A Lie
group is a group G which is also a smooth manifold
and for which the group operations (g, h) 7→ gh and
g 7→ g−1 are smooth. Left action of G on itself Lg :
G→ G is defined by Lg(h) = gh, and right action is
defined the same way. Adjoint action Adg : G→ G is
Adg(h) = ghg−1.

Here are two examples, the special orthogonal group
SO(n) = {R ∈ GL(n,R) : RRT = I, detR = +1} and
the special Euclidean group SE(n) = {(p,R) : p ∈
Rn, R ∈ SO(n)} = Rn × SO(n).
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2.2. Lie algebra associated with Lie
group

A Lie algebra g over R is a real vector space g together
with a bilinear operator [, ]: g× g (called the bracket)
such that for all x, y, z ∈ g, we have:
• Anti-commutativity: [x, y] = −[y, x];
• Jacobi identity: [[x, y], z] + [[y, z], x] + [[z, x], y] = 0.
A Lie algebra g is said to be commutative (or

abelian) if [x, y] = 0 for all x, y ∈ g. We can define
adAB = [A,B] = AB − BA where A,B ∈ gl(n,R)
which is the vector space of all n × n real matrices,
gl(n,R) forms a Lie algebra. Clearly, we have [x, x] =
0. The Lie algebra of SO(2), denoted by so(2), may
be identified with a 2× 2 skew-symmetric matrix of

the form ω̂ =
[

0 −ω
ω 0

]
with the bracket structure

[ω̂1, ω̂2] = ω̂1ω̂2−ω̂2ω̂1, where ω̂1, ω̂2 ∈ so(2). The Lie
algebra of SE(2), denoted by se(2), can be identified

with 3 × 3 matrix of the form ξ̂ =
[
ω̂ v
0 0

]
, where

ω ∈ R, v ∈ R2, with the bracket [ξ̂1, ξ̂2] = ξ̂1ξ̂2 − ξ̂2ξ̂1.
The exponential map: exp : TeG → G is a local

diffeomorphism from a neighborhood of zero in g onto
a neighborhood of e in G. The mapping t→ exp(tξ̂)
is the unique one-parameter subgroup R → G with
tangent vector ξ̂ at time 0. For ω̂ ∈ so(2) and ξ̂ =
(ω̂, v) ∈ se(2), we have

exp ω̂t =
[

cosωt − sinωt
sinωt cosωt

]
, (1)

exp ξ̂t =
[

exp ω̂t A(ω)v
0 1

]
(2)

where A(ω) = 1
ω

[
sinωt −(1− cosωt)

(1− cosωt) sinωt

]
.

2.3. Graph theory
The communication topology among N robots will
be represented by a graph. Let G = (V, E ,A) be a
graph of order N with the finite nonempty set of nodes
V(G) = {v1, . . . , vN}, the set of edges E(G) ⊂ V × V,
and an adjacency matrix A = (aij)N×N . If for all
(vi, vj) ∈ E , (vj , vi) ∈ E as well, the graph is said to
be undirected, otherwise it is called directed. Here,
each node vi in V corresponds to a robot-i, and each
edge (vi, vj) ∈ E in a directed graph corresponds to an
information link from robot-i to robot-j, which means
that robot-j can receive information from robot-i. In
contrast, the pairs of nodes in an undirected graph
are unordered, where an edge (vi, vj) ∈ E denotes that
each robot can communicate with the other one. The
adjacency matrix A of a digraph G is represented as

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 ,

where aij is the weight of link (vi, vj) and aii = 0
for any vi ∈ V, aij > 0 if (vi, vj) ∈ E and aij = 0
otherwise. A of a weighted undirected graph is de-
fined analogously except that aij = aji,∀i 6= j [16]. A
directed path from node vi to vj is a sequence of edges
(vi, vj1), (vj1, vj2), . . . , (vjl, vj) in a directed graph G
with distinct nodes vjk, k = 1, . . . , l. A directed graph
is called acyclic if it contains no directed cycle. A
rooted graph is a graph in which one vertex is distin-
guished as the root.

2.4. Problem statement
A unicycle-type mobile robot is composed of two inde-
pendent actuated wheels on a common axle which is
rigidly linked to the robot chassis. In addition, there
are one or several passive wheels (for example, caster,
Swedish or spherical wheel) which are not controlled
and just serve for sustentation purposes [17]. We
study the formation control problem of a group of
such robots and each one is equipped with a local
controller for deciding the velocities. We consider
each robot as a node of a directed graph G, then the
communication topology of a group of N robots could
be expressed by an adjacency matrix A = (aij)N×N ,
where aii = 0 and aij = 1 if (vi, vj) ∈ E or 0 otherwise.
The purpose is to design the strategy of control ap-
plied to each robot in order that this group of mobile
robots could execute a predefined task of formation
control.

2.5. Kinematic model on Lie group
In order to describe the kinematic properties of the
unicycle-type robot, we consider a reference point OR
at the mid-distance of the two actuated wheels. Then
we define two frames: FI = {O,X, Y } and FR =
{OR, XR, YR}, as shown in Figure 1. FI = {O,X, Y }
is an arbitrary inertial basis on the plane as the global
reference frame and FR = {OR, XR, YR} is a frame
attached to the mobile robot with its origin located at
OR, and the basis {XR, YR} defines two axes relative
to OR on the robot chassis and is thus the robot’s
local reference frame. The position of the robot in
the global reference is specified by coordinates xI and
yI , and the angular difference between the global and
local reference frames is given by θI . Then the pose
of the robot could be described as an element of the
Lie group SE(2):

g =
[
R p
0 1

]
=

 cos θI − sin θI xI
sin θI cos θI yI

0 0 1

 ,
where p = [xI , yI ]T denotes the position of the
robot in the global reference frame, and R =[

cos θI − sin θI
sin θI cos θI

]
is the rotation matrix of the

frame FR relative to frame FI . Then the motion
of a robot could be described by g(t) which is a curve
parameterized by time t in SE(2).
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Figure 1. Representation of the frames.

Each pure rotational motion of a robot on a plane
can be given by a 2× 2 orthogonal matrix R ∈ SO(2).
Let ω ∈ R be the rotation velocity of the robot’s
chassis and then the exponential map exp : so(2)→
SO(2), ω̂ → exp(ω̂t) which is defined by Equation 1

where ω̂ =
[

0 −ω
ω 0

]
∈ so(2) correspond to the

robot chassis rotation. This map represents the rota-
tion from the initial (t = 0) configuration of the robot
to its final configuration with the rotation velocity ω.

The rigid motions consist of rotation and translation.
A general motion could also be described by an expo-
nential map exp : se(2)→ SE(2), ξ̂ → exp(ξ̂t) defined

in Equation 2 where ξ̂ =
[
ω̂ v
0 0

]
∈ se(2) repre-

sents the velocities of movement, and v = −ω̂p+ ṗ =[
ωyI + ẋI
−ωxI + ẏI

]
where (xI , yI) is the position of the

robot and v represents the velocity of a (possibly
imaginary) point on the rigid body which is moving
through the origin of the world frame. exp(ξ̂t) is a
mapping from the initial configuration of the robot
to its final configuration. That is, if we suppose that
the initial configuration of the robot is g(0), then the
final configuration is given by

g(t) = eξ̂tg(0). (3)

The kinematic model of the unicycle-type robot is
given by 

ẋI = u cos(θI)
ẏI = u sin(θI)
θ̇I = ω

where u characterizes the robot’s longitudinal velocity.
The variables u and ω are related to the angular
velocity of the actuated wheels via the one-to-one
transformation:[

u
ω

]
=
[
rw/2 rw/2
rw/L −rw/L

] [
ω1
ω2

]
(4)

where rw is the wheels’ radius, L the distance be-
tween the two actuated wheels, and ω1 and ω2 are

respectively the angular velocity of the right and left
wheel.

We differentiate the matrix given in Equation 3, and
obtain the kinematic model of unicycle-type robot on
Lie group:

ġ(t) = ξ̂g(t) (5)

where ξ̂ is the control input matrix given by

ξ̂ =

 0 −ω ωyI + u cos(θI)
ω 0 −ωxI + u sin(θI)
0 0 0

 . (6)

This is the kinematic model on Lie group for the
unicycle-type robot. For one robot with certain pose
(xI , yI , θI), a control vector (u, ω) results in a unique
control input matrix ξ̂ to update the robot’s motion.

3. Formation control law on
SE(2)

3.1. Controller design
We consider N unicycle-type mobile robots, and use
gi ∈ SE(2) and ḡi ∈ SE(2) (i = 1, · · · , N) to denote
respectively the current configuration and the desired
configuration of each robot. In fact gi is the repre-
sentation of the robot frame FR shown in Figure 1
relative to the spatial frame FI . As introduced in the
previous section, the evolution of the system gi can
be expressed by

ġi = ξ̂igi (7)

where ξ̂i ∈ se(2) is the control input matrix. Let gij
be the configuration of the robot-j frame relative to
the robot-i frame, then we have

gj = gigij . (8)

Thus gij = g−1
i gj . We can use ḡij to represent the

desired configuration of robot-j frame in the robot-i
frame. Then the robots achieve a desired formation if
their configurations satisfy the following equation for
any k = 1, · · · , N, k 6= i

lim
t→∞

g−1
k gi = ḡki, i = 1, · · · , N. (9)

ḡki ∈ SE(2) is defined according to the task re-
quirements and is often used to identify the geometric
configuration of the formation. We study the move-
ment of gi relative to gj , so here we can consider
provisionally gj = ḡj , then ḡij could be written as
ḡ−1
i gj . Thus we have

ḡ−1
i gj = ḡ−1

i ḡj = ḡ−1
i (ḡkḡ−1

k )ḡj
= (ḡ−1

k ḡi)−1(ḡ−1
k ḡj) = (ḡki)−1ḡkj

which gives ḡi = gj(ḡkj)−1ḡki. Then for robot-i (in the
local frame gi), the needed transformation of robot-i
from current configuration to the desired configuration
while considering the current configuration of robot-j
is

g̃i_j = g−1
i gj(ḡkj)−1ḡki. (10)
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To simplify the notations, we note g̃ij instead of
g̃i_j . In the work [1], noting x̃ij = log g̃ij , a control
law for agents, which have holonomic constraints, is
proposed as

ξ̂i = c

ai

N∑
j=1

aij x̃ij , i = 1, · · · , N

where aij is the element in the adjacency matrix
A and ai =

∑N
j=1 aij . However in our MRS,

nonholonomic constraints are associated with the
unicycle-type robots, so we develop a new nonlin-
ear control approach. From the matrix g̃ij , we
could know the position error and orientation er-
ror x̃ij , ỹij , θ̃ij . We suppose that the relative con-
figuration ḡi with respect to the robot frame gi
is denoted by ḡii which could be obtained by the
the mean function M : SE(2)× · · · × SE(2)︸ ︷︷ ︸

N−1

→

SE(2), (g̃i1, · · · , g̃i,i−1, g̃i,i+1, · · · , g̃iN ) 7→ g̃ii which
means to get the weighted arithmetic mean of all
the arguments, that is, if we note

g̃ij =

 cos(θ̃ij) − sin(θ̃ij) x̃ij
sin(θ̃ij) cos(θ̃ij) ỹij

0 0 1


where j = 1, . . . , N and j 6= i, then x̃ii, ỹii, θ̃ii are
given by:

∆ii = c

ai

N∑
j=1

aij∆ij , j 6= i,∆ = x̃, ỹ, θ̃ (11)

where aij is the element of adjacency matrix A,
ai =

∑n
j=1 aij and c > 0 is a proportional gain of

the control input which does not influence the anal-
ysis of stability. Here we choose c = 1. We take the
inverse of the matrix g̃−1

ii which represents the relative
configuration of gi with respect to the desired configu-
ration ḡi when the predefined communication topology
is considered. Let us consider the Figure 2 where the
unknowns are annotated in the list of symbols after
the article.
O′X ′Y ′ is the frame of the desired configuration

of robot i, and (A, θ), related to g̃−1
ii , is the current

pose of robot i in the frame O′X ′Y ′. In this frame,
we assume a circle of radius |r|, denoted by CB , then
propose a control law to drive the robot on to this
circle and move to the origin finally, at the same time,
the orientation θ should converge to 0.
The absolute value |r| is always positive, and it is

supposed appropriately according to the initial con-
ditions. r is signed: when the robot is located in the
lower half-plane, r = −|r| and thus the angle α is also
negative. The coordinate r is determined according
to the following rules:

if |r| ≤ l

2 : r is chosen arbitrarily without
changing sign;

else (|r| > l

2) : r = −y + sign(y)
√

4y2 + 3x2

3 .

(12)

A

θ 

B

O′ X′

Y′

Pr

φ 

l

      

  

P′
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d

_

Figure 2. Geometrical relations between robot actual
configuration and desired configuration.

where the function “sign” is defined as:

sign(x) =
{

1, x ≥ 0;
−1, x < 0.

We note β = arcsin(sin(β̄)), then the local control
law is proposed as follows:{

u=−sign(cos(β̄))λl
ω= u

|r|
(β − α) (13)

where λ is a positive constant. From the proposed
law, we have ui and ωi, then the control input matrix
of robot i is obtained from Equation 6.

3.2. Stability analysis
From the previous section, we know that g̃ii is the
representation of ḡi in the frame gi, while its inverse
g̃−1
ii is the representation of gi in the frame ḡi. To
explain the convergence of gi to ḡi, we just need to
prove that ḡ−1

ii converge to the origin which is also
the identity matrix I. To prove that, with the help of
the notations depicted in Figure 2, we will divide the
movement of each robot into three phases.
Phase 1: l ≥ 2|r|, β − α 6= 0
Lemma 1: If we choose a convenient r which sat-

isfies l ≥ 2|r|, then the angle between the direction of
movement and one tangent of the circle CB converge
to 0, that is δ = |β − α| → 0.
Proof:
If r > 0, we have δ = |β − α| =

√
(β − α)2, then

δ̇ = β − α√
(β − α)2

(β̇ − α̇) = sign(β − α)(β̇ − α̇).

Because β = arcsin(sin(β̄)) = arcsin(sin(θ − ϕ)), so

β̇ = 1
1− sin2(θ − ϕ)

· cos(θ − ϕ) · (θ̇ − ϕ̇)

= sign(cos(β̄))(θ̇ − ϕ̇).
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Consider the coordinate transformation into polar
coordinates, we have ϕ̇ = u sin(β)/l and l̇ = u cos(β).
Case 1: β̄ ∈

[
−π2 ,

π

2

]
in this case, the control law is u = −λl, ω = −λl(β −
α)/r. And

sin(α) = r

l

⇒ α̇ = − rl̇

l2 cos(α) = λr cos(β)
l cos(α) = λ cos(β) tan(α).

Then we have

δ̇ = sign(β − α)
(
ω − u sin β

l
− λ cosβ tanα

)
= sign(β − α)λ

[
− l

r
(β − α) + sin(β)

− cos(β) tan(α)
]
.

Suppose Eβ = − l
r

(β − α) + sin(β) − cos(β) tan(α).

Because sin(α) = r/l and l ≥ 2r, so dEβ
dβ

< 0. Then
we can say that Eβ is a monotonically decreasing
function about β and β = α is the unique zero value
point of Eβ . So

if− π

2 ≤ β < α : Eβ > 0, β − α < 0, then δ̇ ≤ 0;

if α ≤ β ≤ π

2 : Eβ ≤ 0, β − α > 0, then δ̇ ≤ 0.

So δ converge monotonically to 0.
Case 2: β̄ ∈

(π
2 , π

]
We have β = π − β̄ ∈ (0, π2 ], and the control law is

u = λl, ω = λl

r
(π − β̄ − α).

In this case, we get

δ̇ = sign(β − α)λ
[
sign

(
cos(β̄)

) ( l
r

(π − β̄ − α)

− sin(β̄)
)

+ cos(β̄) tan(α)
]
.

Suppose Eβ = sign(cos β̄)
[
l

r
(π − β̄ − α)− sin β̄

]
+

cos(β̄) tan(α), then

dEβ
dβ

= − l
r

+ cos(β) + sin(β) tan(α) < 0.

α = β = π − β̄ is the equilibrium point of Eβ , so δ
converge monotonically to 0.
Case 3: β̄ ∈

[
−π,−π2

)
β = −π − β̄, we can get the similar result to case 2.

If r < 0, the same calculus leads to the same results.
Hence we have the conclusion δ = |β − α| → 0. �
Phase 2: l ≥ 2|r|, δ = β − α = 0
Because of the regulation of phase 1, in this phase,

the robot will move towards the origin along the

A θ 

P′

O′ X′

Y′

B

r

φ

 

l

P

Figure 3. movement in phase 3.

tangent of the circle CB, thus δ = 0 and ω =
u(β − α)/|r| = 0.
Lemma 2: Suppose d = |O′A| and the Lyapunov

function is chosen as V = 1
2d

2 + 1
2θ

2. If the robot
move towards the origin along the tangent of the circle
CB , then V̇ < 0.
Proof:
Consider the polar coordinates, we have

ḋ = u cos(β̄ − ψ)sign(x)sign(y)
= cos(β̄ − ψ)sxsy

where sx is sign(x) for short. We find that if u < 0,
then 0 < |β̄| ≤ π

6 ; if u > 0, then 5π
6 ≤ |β̄| < π.

The angle ψ is always positive. If l = 2|r|, ψ is
maximal: ψmax = arccos(7/8) ≈ 0.5054, then no
matter what sign x and y have, we have

ḋ = −sign(cos(β̄))λl cos(β̄ − ψsxsy) < 0.

In this phase, δ = 0, so θ̇ = ω = 0. Hence V̇ =
dḋ+ θθ̇ < 0. The lemma is proved. �
Phase 3: l = 2|r|
In this phase, we have always l = 2r and β = α =

π

6 (shown in Figure 3). We use y(x) to represent the
movement of the robot and suppose r ≥ 0. The case
r < 0 could be studied in the same way and the same
conclusion will be obtained. (x, y) is the position of
the point A.
Theorem 1: Suppose that one robot, with the

velocity defined by the proposed control law (Equa-
tion 13), moves towards the origin along the tangent
of the circle CB(Figure 3) of which the radius |r| satis-
fies l = 2|r| and r is determined by rule (Equation 12),
then both d and θ asymptotically converge to 0.
Proof:
We consider first the case where r > 0. In this case,

l = 2r, (x, y) satisfies the equation x2 + (y − r)2 =

5
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4r2. Then we get r = −y +
√

3x2 + 4y2

3 (the negative
solution is omitted). Using BP⊥PA, we could have

y′ = dy

dx
= −3x+

√
3(4y −

√
3x2 + 4y2)

−3
√

3x+ 4y −
√

3x2 + 4y2
.

This is an homogeneous differential equation. We
suppose y = zx and differentiate it about x:

dy

dx
= z + x

dz

dx
= 3x+

√
3(4y −

√
3x2 + 4y2)

3
√

3x− 4y +
√

3x2 + 4y2

= 3 +
√

3(4z −
√

3 + 4z2)
3
√

3− 4z +
√

3 + 4z2
.

Simplify this result and get

dx

x
= 3

√
3− 4z +

√
3 + 4z2

3 +
√
z + 4z2 − (

√
3 + z)

√
3 + 4z2

dz.

Integrate it and get

ln |x| =
∫ 3

√
3− 4z +

√
3 + 4z2

3 +
√
z + 4z2 − (

√
3 + z)

√
3 + 4z2

dz

=
√

3
z

(
−
√

1 + 4
3z

2 − 1
)
− 1

2 ln
(
z2 + 1

)
+arctanh

(
z√

3 + 4z2

)
+ const

where “const” is a constant and its value is determined
by the initial conditions.
When x > 0, x = l cos(ϕ), so

ẋ = l̇ cos(ϕ)− lϕ̇ sin(ϕ)
= −λl cos(β)− l · λ sin(β) · sin(ϕ)

= −λl2 (
√

3 + sin(ϕ)) < 0.

l = 0 is the equilibrium point, so x→ 0. This is also
the conclusion for x < 0. So we just need to consider
right neighborhood of the origin, hence

x = exp
(√

3
z

(
−
√

1 + 4
3z

2 − 1
)
− 1

2 ln(z2 + 1)

+arctanh
(

z√
3 + 4z2

)
+ const

)
.

Thus

dx

dz
= x

(−z3 +
√

3z2 +
√

3)
√

3 + 4z2 + 4z2 + 3
z2(z2 + 1)

√
3 + 4z2

.

Solve the equation dx

dz
= 0, get z0 = 1 +

√
3. And

when z < z0,
dx

dz
> 0; when z > z0,

dx

dz
< 0. So in

the right neighborhood of the origin, dx
dz

< 0. Hence
if z → 0, then x→ 0, and we have the approximate
relation between x and z:

ln x = −2
√

3
z
− z√

3
− z2

2 +O(z3).

Now z is very close to 0, so the terms of higher orders
could be omitted and we get

ln x = −2
√

3
z

= −2
√

3x
y

.

Thus y = −2
√

3x
ln x → 0 when x→ 0.

The inclination converge also to 0, because

tan(θ) = dy

dx
∼ d

dx

(
−2
√

3 x

ln x

)
= −2

√
3
(

1
ln x −

1
ln2 x

)
,

when x → 0, tan(θ) → 0, then θ → 0. From the
proposed control law, we know that l = 0 is the
equilibrium point, and here it is demonstrated that
when l→ 0, the limit of d and θ are both 0.

In the polar coordinate frame, we have

l̇ = u cos β̄ = −sign(cos β̄)λl cos β̄ = −λl| cos β̄|,

hence l→ 0. With the trigonometric relations, we
could prove that V̇ = dḋ + θθ̇ < 0, and the gain λ
does not affect the stability.

When r < 0, the same reasoning can be done. This
completes the proof. �

Suppose D to be a length that has the same order
of the workspace of the system and satisfies l ≤ D for
any t ∈ R and any robot. The two wheel velocities
are

ω1 = 2u+ ωL

2rw
, ω2 = 2u− ωL

2rw
,

and satisfy |ω1| ≤ ωmax, |ω2| ≤ ωmax, then we get
the range of λ:

0 < λ ≤ λmax = rwωmax

D + 2π
3 µRchassis

where Rchassis = L/2 is the radius of the robot chassis,
and µ is a convenient number that satisfies l/|r| ≤ µ
for ∀t.

3.3. Stability of formation control
Because of the nonholonomic constraints, if there is
a bidirectional path between any two unicycle-type
robots which are equipped with this local control law,
the system will not converge, so we propose a rooted
directed acyclic graph as the communication topology
of the multi-robot system and the theorem below.
Theorem 2: If the communication topology be-

tween N unicycle-type robots is a rooted directed
acyclic graph, then the system (Equation 7) will
achieve the desired formation (Equation 9) under the
local control law (Equation 11, 13). Especially, each
robot, in phase 3, converges to the desired formation
asymptotically.

Proof:
There is no directed circle, so the root node (robot)

will not receive any information and will be static. Let
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Km denote the set of the nodes (robots) to which there
is a directed path from the root and this path consists
of at most m edges. Then K0 has only one element –
the root robot, denoted by v0. The configuration of
this robot in the fixed frame is denoted by g0 = ḡ0.
Then we use the mathematical induction method.

For K1: suppose that there are n1 elements in K1.
One element is denoted by v1i where 1 ≤ i ≤ n1,
and the configuration of v1i is denoted by g1i. Be-
cause v1i receives information only from v0, according
to the lemmas above and theorem 1 we know that
limt→∞ g−1

1i g0 = ḡ1i,0.
For Km: the elements in this set are denoted by

vmi, 1 ≤ i ≤ cm where cm is the cardinality of this
set. vmi receives information from the nodes which are
elements of

⋃
Kn,n≤m−1 and have achieved the desired

configurations. We use j to denote the index numbers
of these robots, that is, vnjj ∈ Knj

⊂
⋃
Kn,n≤m−1.

Then with control law, vmi will converge to the desired
configuration relative to vnjj , so

lim
t→∞

g−1
mig0 = lim

t→∞
g−1
mignjjg

−1
njj
g0

= ( lim
t→∞

g−1
mi ḡnjj)(ḡ−1

njj
ḡ0)

= ḡ−1
(njj),miḡ(njj),0

= ḡmi,0.

The topology graph is a finite graph, so all the
robots will converge to the desired configuration rela-
tive to v0. Then for any vi, vj , we have

lim
t→∞

g−1
i gj = lim

t→∞
g−1
i g0g

−1
0 gj = ḡ−1

0i ḡ0j = ḡij .

Then the formation in Equation 9 is achieved. �

4. Simulation
Let us consider a group of 6 unicycle-type robots which
are located in a global frame, and we suppose that each
robot could know its own position and orientation in
the frame via GPS or a camera which is installed above
the work area. The initial pose of each is p = (x, y, θ)
where (x, y) represents the robot position in the global
frame and the angle θ indicates the orientation of the
robot. The six initial poses are given by

p1 = (0, 0, 0), p2 = (5, 3, 0),
p3 = (−1, 6, π/6), p4 = (6,−5,−π/2),
p5 = (0,−5, π/3), p3 = (−5,−4,−π/2).

and the desired formation is a regular hexagon with
side length of 2. Let c = 1, the sample time is 0.1 s,
and the maximum angular velocity of the wheels is
ωmax = 5π/s. The communication topology is given
in Figure 4.
Using Matlab, the results are obtained as shown

in Figure 5 and 6. We observe that the six robots
achieve the desired hexagonal formation: the robot-1
has no information source, so it remains static. Other
robots perform the trajectories according to the pos-
ture of their information source robots. The robots

1

2 3

4 5 6

Figure 4. Communication topology of simulation.

Figure 5. Trajectories of the 6 robots.

4, 5 and 6 achieve the desired configurations after 2
and 3 because of the communication topology shape.
Figure 6 shows the evolution of the angles between
the forward direction of each robot and X-axis of the
global frame. We see that the six angles turn to a
same value after some regulations of the configura-
tions which indicates the coordination of the robots’
orientations. The rotation velocities become 0 at the
end.

5. Conclusions
In this paper, we study the problem of formation
control for a group of unicycle-type robots using Lie
group. A local control law based on SE(2) for the
robots is proposed and the stability is analyzed. The
problem is investigated under a rooted directed acyclic
communication topology for a group of unicycle-type
robots, the behavior of the system is discussed. Some
simulations of a 6-robot system validate the proposed
control laws. The problem of avoiding dynamic and
static obstacles was not considered, and the commu-
nication topology was supposed fixed. The case of
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Figure 6. Orientation of the 6 robots.

switching topology, avoiding obstacles and experiment
on real robots will be studied in our future work.

List of symbols
u robot’s longitudinal velocity [m/s]
ω robot’s chassis instantaneous velocity of rotation

[rad/s]
ω1, ω2 angular velocity of right and left wheel [rad/s]
rω radius of wheel [m]
L distance between the two actuated wheels [m]
p = [xI , yI ]T position of robot in frame FI

gi ∈ SE(2) configuration of local frame attached on robot-
i relative to the frame FI

gij configuration of robot-j relative to the local frame
attached on robot-i

ḡij desired configuration of robot-j relative to robot-i
B = (0, r) the centre of a circle of which the radius is |r|
A = x, y position of robot gi in frame O′X ′Y ′

θ the orientation of robot gi relative to axis O′X ′

ϕ = ∠ABX ′ ∈ [−π, π]
l = |AB| distance between A and B
d = |O′A| distance between A and O′

β̄ angle formed by −→BA and robot’s orientation,∈ [−π, π]
α = arcsin(r/l) ∈ [−π/2, π/2]
ψ = ∠BAO′ ∈ [0, π/2]
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