
IROS 2015 Workshop on On-line decision-making in multi-robot coordination (DEMUR’15)
http://robotics.fel.cvut.cz/demur15/

MULTI-ROBOT MOTION PLANNING: A MODIFIED RECEDING
HORIZON APPROACH FOR REACHING GOAL STATES

José M. Mendes Filhoa,b, Eric Luceta,∗

a CEA, LIST, Interactive Robotics Laboratory, Gif-sur-Yvette, F-91191, France
b ENSTA Paristech, UnitÃľ d’Informatique et d’IngÃľnierie des SystÃĺmes, 828 bd des Marechaux, 91762, France
∗ corresponding author: eric.lucet@cea.fr

Abstract.
This paper proposes the real-time implementation of an algorithm for collision-free motion planning

based on a receding horizon approach, for the navigation of a team of mobile robots in presence of
obstacles of different shapes. The method is simulated with three robots. Impact of parameters is
studied with regard to computation time, obstacle avoidance and travel time.

Keywords: multi-robot motion planning, nonholonomic mobile robot, distributed planning,
receding horizon.

1. Introduction
The control of mobile robots is a long-standing
subject of research in the robotics domain. A
trending application of mobile robotic systems is their
use in industrial supply-chains for processing orders
and optimizing products’ storage and distribution.
Companies such as Amazon and the logistic provider
IDEA Groupe employ mobile multi-robot systems
(Kiva systems, Scallog respectively) for autonomously
processing client orders [1, 2]. Such logistics tasks
became increasingly complex as sources of uncertainty,
such as human presence, are admitted in the work
environment.
One basic requirement for such mobile multi-

robot systems is the capacity of motion planning,
that is, generating admissible configuration and
input trajectories connecting two arbitrary states.
For solving the motion planning problem, different
constraints must be taken into account, in particular,
the robot’s kinematic and geometric constraints.
The first constraints derive directly from the

mobile robot architecture implying, in particular,
in nonholonomic constraints. Geometric constraints
result from the need of preventing the robot to assume
specific configurations in order to avoid collisions,
communication lost, etc.
We are particularly interested in solving the

problem of planning a trajectory for a team of
nonholonomic mobile robots, in a partially known
environment occupied by static obstacles, being
efficient with respect to the travel time (amount of
time to go from initial to goal configuration).
A great amount of work towards collision-free

motion planning for cooperative multi-robot systems
has been proposed. That work can be split into
centralized and distributed approaches. Centralized
approaches are usually formulated as an optimal
control problem that takes all robots in the team

into account at once. This produces solutions closer
to the optimal one than distributed approaches.
However, the computation time, security vulnerability
and communication requirements can make it
impracticable, specially for a great number of
robots [3].

Distributed methods based in probabilistic [4] and
artificial potential fields [5] approaches, for instance,
are computationally fast. However, they deal with
collision avoidance as a cost function to be minimized.
But rather than having a cost that increases as paths
leading to collision are considered, collision avoidance
should to be considered as hard constraints of the
problem.

Other distributed algorithms are based on receding
horizon approaches. In [6] a brief comparison of the
main distributed receding methods is made as well as
the presentation of the base approach extended in our
work. In this approach each robot optimizes only its
own trajectory at each computation/update horizon.
In order to avoid robot-to-robot collisions and lost of
communication, neighbor robots exchange information
about their intended trajectories before performing
the update. Intended trajectories are computed by
each robot ignoring constraints that take the other
robots into account.
Identified drawbacks of this approach are the

dependence on several parameters for achieving real-
time performance and good solution optimality, the
difficulty to adapt it for handling dynamic obstacles,
the impossibility of bringing the robots to a precise
goal state and the limited geometric representation of
obstacles.
Therefore, in this paper, we propose a motion

planning algorithm that extends the approach
presented in [6]. In this modified algorithm goal
states can be precisely reached and more complexes
forms of obstacles handled. Furthermore, we perform
an investigation about how the method’s parameters

1

José M. Mendes Filho, Eric Lucet http://robotics.fel.cvut.cz/demur15/
DEMUR’15

impact a set of performance criteria. Thus, this
distributed algorithm is able to find collision-free
trajectories and computes the corresponding angular
and longitudinal velocities for a multi-robot system
in presence of static obstacles perceived by the robots
as they evolve in their environment.
This paper is structured as follows. The second

section states the problem to be resolved, pointing
out the cost function for motion planning and all
constraints that need to be respected by the computed
solution. The third section explains the algorithm
for resolving the motion planning problem and gives
some remarks on how to resolve the constrained
optimization problems associated with the method.
The forth section is dedicated to the results found
using this method and the analysis of the specific
performance criteria and how they are impacted by
the algorithm parameters. Finally, in last section we
present our conclusions and perspectives.

2. Problem Statement
2.1. Assumptions
In the development of the approach presented in this
paper, the following assumptions are made:

(1.) The motion of the multi-robot system begins at
the instant tinit and goes until the instant tfinal.

(2.) The team of robots consists of a set R of B
nonholonomic mobile robots.

(3.) A robot (denoted Rb, Rb ∈ R, b ∈ {0, . . . , B−1})
is geometrically represented by a circle of radius ρb

centered at (xb, yb).
(4.) All obstacles in the environment are considered
static. They can be represented by a set O of M
static obstacles.

(5.) An obstacle (denoted Om, Om ∈ O,
m ∈ {0, . . . ,M − 1}) is geometrically represented
either as a circle or as a convex polygon. In the
case of a circle its radius is denoted rOm

centered
at (xOm

, yOm
).

(6.) For a given instant tk ∈ [tinit, tfinal], any
obstacle Om is considered detected by the robot
Rb whenever the distance between their geometric
centers is less than or equal to the detection radius
db,sen of the robot Rb. Therefore, this obstacle Om

is part of the set Ob (Ob ⊂ O) of detected obstacles.
(7.) A robot has precise knowledge of the position
and geometric representation of a detected obstacle,
i.e., obstacles perception issues are neglected.

(8.) A robot can access information about any robot
in the team by using a wireless communication
link. Latency, communication outages and other
problems associated to the that communication link
are neglected.

(9.) The dynamic model of the multi-robot systems
is neglected.

(10.) The input (or control) vector of a mobile robot
Rb is bounded.

2.2. Constraints and cost functions
After giving the assumptions in the previous
Subsection, we can define the constraints and the
cost function for the multi-robot navigation.
(1.) The solution of the motion planning problem for
the robot Rb represented by the pair (q∗

b (t), u∗
b(t))

– q∗
b (t) ∈ Rn being the solution trajectory for the

robot’s configuration and u∗
b(t) ∈ Rp the solution

trajectory for the robot’s input – must satisfy the
robots kinematic model equation:

q̇∗
b (t) = f(q∗

b (t), u∗
b(t)), ∀t ∈ [tinit, tfinal]. (1)

where f : Rn × Rp → Rn the is the vector-valued
function modeling the robot kinematics.

(2.) The planned initial configuration and initial input
for the robot Rb must be equal to the initial
configuration and initial input of Rb:

q∗
b (tinit) = qb,init, (2)

u∗
b(tinit) = ub,init. (3)

(3.) The planned final configuration and final input for
the robot Rb must be equal to the goal configuration
and goal input for Rb:

q∗
b (tfinal) = qb,goal, (4)

u∗
b(tfinal) = ub,goal. (5)

(4.) Practical limitations of the input impose the
following constraint: ∀t ∈ [tinit, tfinal], ∀i ∈
[1, 2, · · · , p],

|u∗
b,i(t)| ≤ ub,i,max. (6)

(5.) The cost for the multi-robot system navigation
is defined as:

L(q(t), u(t)) =
B−1∑
b=0

Lb(qb(t), ub(t), qb,goal, ub,goal)

(7)
where Lb(qb(t), ub(t), qb,goal, ub,goal) is the
integrated cost for one robot motion planning
(see [6]).

(6.) To ensure collision avoidance with obstacles, the
euclidean distance between a robot and an obstacle
(denoted d(Rb, Om) | Om ∈ Ob, Rb ∈ B) has to
satisfy:

d(Rb, Om) ≥ 0. (8)
For the circle representation of an obstacle the

distance d(Rb, Om) is defined as:√
(xb − xOm)2 + (yb − yOm

)2 − ρb − rOm
.

For the convex polygon representation, the
distance was calculated using three different
definitions, according to the Voronoi region [7] Rb

is located.

2

DEMUR’15
http://robotics.fel.cvut.cz/demur15/ Trajectory Generation Approach

(7.) In order to prevent inter-robot collisions, the
following constraint must be satisfied: ∀ (Rb, Rc) ∈
R×R, b 6= c, c ∈ Cb,

d(Rb, Rc)− ρb − ρc ≥ 0 (9)

where d(Rb, Rc) =
√

(xb − xc)2 + (yb − yc)2 and Cb

is the set of robots that present a collision risk with
Rb.

(8.) Finally, the need of a communication link
between two robots (Rb, Rc) yields to the following
constraint:

d(Rb, Rc)−min(db,com, dc,com) ≤ 0 (10)

with db,com, dc,com the communication link reach of
each robot and Db is the set of robots that present
a communication lost risk with Rb.

3. Distributed motion planning
3.1. Receding horizon approach
Since the environment is progressively perceived by
the robots and new obstacles may appear as time
passes, planning the whole motion from initial to goal
configurations before the beginning of the motion
is not a satisfying approach. Planning locally and
replanning is more suitable for taking new information,
as they come, into account. Besides, the computation
cost of finding a motion plan using the first approach
may be prohibited high if the planning complexity
depends on the distance between start and goal
configurations.

Therefore, an on-line motion planner is proposed. In
order to do so a receding horizon control approach [8]
is used.

Two fundamental concepts of this approach are the
planning horizon Tp and update/computation horizon
Tc. Tp is the timespan for which a solution will be
computed and Tc is the time horizon during which
a plan is executed while the next plan, for the next
timespan Tp, is being computed. The problem of
producing a motion plan during a Tc time interval is
called here a receding horizon planning problem.
For each receding horizon planning problem, the

following steps are performed:

Step 1. All robots in the team compute an intended
solution trajectory (denoted (q̂b(t), ûb(t))) by solving
a constrained optimization problem. Coupling
constraints (9) and (10) that involve other robots
in the team are ignored.

Step 2. Robots involved in a potential conflict
(that is, risk of collision or lost of communication)
update their trajectories computed during Step 1 by
solving another constrained optimization problem that
additionally takes into account coupling constraints
(9) and (10). This is done by using the other robots’
intended trajectories computed in the previous step

as an estimate of those robots’ final trajectories. If
a robot is not involved in any conflict, Step 2 is not
executed and its final solution trajectory is identical
to the one estimated in Step 1.

All robots in the team use the same Tp and
Tc for assuring synchronization when exchanging
information about their positions and intended
trajectories.
For each of these steps and for each robot in

the team, one constrained optimization problem is
resolved. The cost function to be minimized in those
optimization problems is the geodesic distance of a
robot’s current configuration to its goal configuration.
This assures that the robots are driven towards their
goal.

This two step scheme is explained in details in [6, 9]
where constrained optimization problems associated
to the receding horizon optimization problem are
formulated.
However, constraints related to the goal

configuration and goal input of the motion planning
problem are neglected in their method. Constraints
(4) and (5) are left out of the planning. For taking
them into account, a termination procedure is
proposed in the following that enables the robots to
reach their goal state.

3.2. Motion planning termination
After stopping the receding horizon planning
algorithm, we propose a termination planning that
considers those constraints related to the goal state.
This enables the robots to reach their goal states.

The criterion used to pass from the receding horizon
planning to the termination planning is based on the
distance between goal and current position of the
robots. It is defined by the equation 11:

drem ≥ dmin + Tc · vmax (11)

This condition ensures that the termination plan will
be planned for at least a dmin distance from the robot’s
goal position. This minimal distance is assumed to be
sufficient for the robot to reach the goal configuration.
Before solving the termination planning problem

new parameters for the solution representation and
computation are calculated by taking into account the
estimate remaining distance and the typical distance
traveled for a Tp planning horizon. This is done
in order to rescale the configuration intended for a
previous planning horizon not necessarily equal to the
new one. Potentially, this rescaling will decrease the
computation time for the termination planning.
The following pseudo code 1 summarizes the

planning algorithm and the Figure 1 illustrates
how plans would be generated through time by the
algorithm.
In the pseudo code, we see the call of a PlanSec

procedure. It corresponds to the resolution of the

3

José M. Mendes Filho, Eric Lucet http://robotics.fel.cvut.cz/demur15/
DEMUR’15

receding horizon planning problem as defined in
subsection 3.1.

PlanLastSec is the procedure solving the
termination planning problem. This problem is similar
to the receding horizon planning problems.
It also has the two steps presented before for

computing an intended plan and for updating it, if
need be, so conflicts are avoided.
The difference consists in how the optimization

problems associated to it are defined. The
optimization problem defined in (12) and (13) is the
problem solved at the first step. The optimization
problem associated with the second step is defined (14)
and (15). Besides, in both new constrained optimal
problems, the planning horizon is not a fixed constant
as before, instead it is a part of the solution to be
found.

Then, for generating the intended plan the following
is resolved:

min
q̂b(t),ûb(t),Tf

Lb,f (q̂b(t), ûb(t), qb,goal, ub,goal) (12)

under the following constraints for τk = kTc with k
the number of receding horizon problems solved before
the termination problem:

˙̂qb(t) = f(q̂b(t), ûb(t)), ∀t ∈ [τk, τk + Tf]
q̂b(τk) = q∗

b (τk−1 + Tc)
ûb(τk) = u∗

b(τk−1 + Tc)
q̂b(τk + Tf) = qb,goal

ûb(τk + Tf) = ub,goal

|ûb,i(t)| ≤ ub,i,max, ∀i ∈ [1, p],∀t ∈ (τk, τk + Tf)
d(Rb, Om) ≥ 0, ∀Om ∈ Ob, t ∈ (τk, τk + Tf)

(13)
And for generating the final solution:

min
q∗

b
(t),u∗

b
(t),Tf

Lb,f (q∗
b (t), u∗

b(t), qb,goal, ub,goal) (14)

under the following constraints:

q̇∗
b(t) = f(q∗

b (t), u∗
b(t)), ∀t ∈ [τk, τk + Tf]

q∗
b (τk) = q∗

b (τk−1 + Tc)
u∗

b(τk) = u∗
b(τk−1 + Tc)

q∗
b (τk + Tf) = qb,goal

u∗
b(τk + Tf) = ub,goal

|u∗
b,i(t)| ≤ ub,i,max, ∀i ∈ [1, p],∀t ∈ (τk, τk + Tf)

d(Rb, Om) ≥ 0, ∀Om ∈ Ob,∀t ∈ (τk, τk + Tf)
d(Rb, Rc)− ρb − ρc ≥ 0, ∀Rc ∈ Cb,∀t ∈ (τk, τk + Tf)
d(Rb, Rd)−min(db,com, dd,com) ≥ 0, ∀Rd ∈ Db,

∀t ∈ (τk, τk + Tf)
d(q∗

b (t), q̂b(t)) ≤ ξ, ∀t ∈ (τk, τk + Tf)
(15)

A possible definition for the Lb,f cost function
present in the equations above can be simply Tf . The
sets Ob, Cb and Db are functions of τk.

3.3. Strategies for solving the
constrained optimization problems

3.3.1. Flatness property
As explained in [9], all mobile robots consisting of a
solid block in motion can be modeled as a flat system.

Algorithm 1 Motion planning algorithm
1: procedure Plan
2: qlatest ← qinitial

3: drem ← |Pos(qfinal)−Pos(qlatest)|
4: while drem ≥ dmin + Tc · vmax do
5: InitSolRepresentation(· · ·)
6: qlatest ←PlanSec(· · ·)
7: drem ← |Pos(qfinal)−Pos(qlatest)|
8: end while
9: RescaleRepresentation(· · ·)

10: Tf ←PlanLastSec(· · ·)
11: end procedure

Figure 1. Receding horizon scheme with termination
plan. The timespan Tf represents the duration of the
plan for reaching the goal configuration.

This means that a change of variables is possible in
a way that states and inputs of the kinematic model
of the mobile robot can be written in terms of a
new variable, called flat output (z), and its lth first
derivatives. The value of l | l ≤ n depends on the
kinematic model of the mobile robot. Therefore, the
flat output can completely determine behavior of the
system.
Searching for a solution to our problem in the flat

space rather than in the actual configuration space of
the system presents advantages. It prevents the need
for integrating the differential equations of system
(constraint 1) and reduces the dimension of the
problem of finding an optimal admissible trajectory.
After finding (optimal) trajectories in the flat space, it
is possible to retrieve back the original configuration
and input trajectories.

3.3.2. Parametrization of the flat output by
B-splines

Another important aspect of this approach is the
parametrization of the flat output trajectory. As done
in [10], the use of B-spline functions present interesting
properties.
• It is possible to specify a level of continuity Ck when
using B-splines without additional constraints.

• B-spline presents a local support – changes in
parameters values have a local impact on the
resulting curve.

The first property is very well suited for parametrizing

4

DEMUR’15
http://robotics.fel.cvut.cz/demur15/ Trajectory Generation Approach

the flat output since its lth first derivatives will be
needed when computing the system actual state and
input trajectories. The second property is important
when searching for an admissible solution in the flat
space; such parametrization is more efficient and
well-conditioned than, for instance, a polynomial
parametrization [10].
This choice for parameterizing the flat output

introduces a new parameter to be set in the motion
planning algorithm which is the number of non-
null knots intervals (denoted simply Nknots). This
parameter plus the l value determines how many
control points will be used for generating the B-splines.

3.3.3. Optimization solver
The optimization problems associated with finding
the solution q∗(t), u∗(t) are solved using a numerical
optimization solver. For all time dependent
constraints time sampling is used. This introduces a
new parameter in the algorithm: the time sampling
for optimization Ns. Each constraint that must be
satisfied ∀t ∈ (τk, τk + Tf) implies in Ns equations.

The need of a solver that supports nonlinear equality
and inequality constrains restricts the number of
numerical optimization solvers to be considered.
For our initial implementation of the motion

planning algorithm, the SLSQP optimizer stood out as
a good option. Besides being able to handle nonlinear
equality and inequality constrains, its availability in
the minimization module of the open-source scientific
package Scipy [11] helps to facilitate the motion
planner implementation.
However, an error was experienced using this

optimizer which uses the SLSQP Optimization
subroutine originally implemented by Dieter Kraft [12].
As the cost function value becomes too high (typically
for values greater than 103), the optimization
algorithm finishes with the "Positive directional
derivative for linesearch" error message. This appears
to be a numerical stability problem experienced by
other users as discussed in [13].
For working around this problem, we proposed

a change in the objective functions of the receding
horizon optimization problems. This change aims
to keep the evaluated cost of the objective function
around a known value when close to the optimal
solution instead of having a cost depending on the
goal configuration (which can be arbitrarily distant
from the current position).

We simply exchanged the goal position point in the
cost function by a new point computed as follows:

pb,new = pb,goal − pb(τs−1 + Tc)
norm(pb,goal − pb(τs−1 + Tc))αTpvb,max

Where pb,goal and pb(τs−1 + Tc) are the positions
associated with configurations qb,goal and qb(τs−1 +Tc)
respectively, α | α ≥ 1, α ∈ R is a constant for
controlling how far from the current position the new
point is placed, the product Tpvb,max the maximum

possible distance covered by Rb during a planning
horizon and s | s ∈ [0, k), s ∈ N the current receding
horizon problem index.

4. Simulation results
Results and their analysis for the motion planner
presented in the previous sections are presented here.
The trajectory and velocities shown in Figures 2

and 3 illustrate a motion planning solution found
for a team of three robots. They plan their motion
in an environment where three static obstacles are
present. Each point along the trajectory line of a robot
represents the beginning of a Tc update/computation
horizon.
It is possible to see on those figures how the

planner generates configuration and input trajectories
satisfying the constraints associated with the goal
states.
In particular, in Figure 2, the resulting plan

is computed ignoring coupling constraints (Step 2
is never performed) and consequently two points
of collision occur. A collision-free solution is
presented in Figure 3. Specially near the regions
were collisions occurred a change in the trajectory
is present from Figure 2 to Figure 3 to avoid
collision. Complementary, changes in the robots
(linear) velocities across charts in both figures can
be noticed. Finally, the bottom charts show that the
collisions were indeed avoided: inter-robot distances
in Figure 3 are greater than or equal to zero all along
the simulation.
For performing these two previous simulations,

a reasonable number of parameters have to be
set. These parameters can be categorized into two
groups. Algorithm related parameters and the
optimization solver related ones. Among the
former group, the most important ones are:

• The number of sample for time discretization (Ns);

• The number of internal knots for the B-splines
curves (Nknots);

• The planning horizon for the sliding window (Tp);

• The computation horizon (Tc).

• The detection radius of the robot (dsen).

The latter kind depends on the numeric
optimization solver adopted. However, since most
of them are iterative methods, it is common to have
at least a maximum number of iterations and a stop
condition parameters.

This considerable number of parameters makes the
search for a satisfactory set of parameters’ values a
laborious task.
Therefore, it is important to have a better

understanding of how some performance criteria are
impacted by the changes in algorithm parameters.

5

José M. Mendes Filho, Eric Lucet http://robotics.fel.cvut.cz/demur15/
DEMUR’15

1 2 3 4 5 6 7 8
x(m)

0

1

2

3

4

5

y(
m

)

collision

collision

Generated trajectory

R0 R1 R2

0 1 2 3 4 5 6 7 8 9
time(s)

0.6

0.7

0.8

0.9

1.0

1.1

v(
m
/
s)

Linear speed

R0 R1 R2

0 1 2 3 4 5 6 7 8
time (s)

1

0

1

2

3

4

5

In
te

r-
ro

b
o
t

d
is

ta
n
ce

 (
m

)

Inter-robot distances throughout simulation

d(R0 ,R1)−ρ0−ρ1

d(R0 ,R2)−ρ0−ρ2

d(R1 ,R2)−ρ1−ρ2

Figure 2. Motion planning solution without collision
handling

4.1. Parameters’ impact
Three criteria considered important for the validation
of this method were studied: Maximum computation
time during the planning over the computation horizon
(MCT/Tc ratio); Obstacle penetration area (P);
Travel time (Ttot). Different parameters configuration
and scenarios where tested in order to highlight how
they influence those criteria.

4.1.1. Maximum computation time over
computation horizon MCT/Tc

The significance of this criterion lays in the need of
assuring the real-time property of this algorithm. In a
real implementation of this approach the computation
horizon would have always to be superior than the
maximum time took for computing a plan.

Table 1 summarizes one of the scenarios studied for
a single robot. Results obtained from simulations in
that scenario are presented in Figure 4, for different
parameters set.
Each dot along the curves corresponds to the

1 2 3 4 5 6 7 8
x(m)

0

1

2

3

4

5

y(
m

)

Generated trajectory

R0 R1 R2

0 1 2 3 4 5 6 7 8 9
time(s)

0.6

0.7

0.8

0.9

1.0

1.1

v(
m
/s

)

Linear speed

R0 R1 R2

0 1 2 3 4 5 6 7 8
time (s)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

In
te

r-
ro

b
o
t

d
is

ta
n
ce

 (
m

)

Inter-robot distances throughout simulation

d(R0 ,R1)−ρ0−ρ1

d(R0 ,R2)−ρ0−ρ2

d(R1 ,R2)−ρ1−ρ2

Figure 3. Motion planning solution with collision
handling

average of MCT/Tc along different Tp’s for a given
value of (Tc/Tp, Ns). The absolute values observed
in the charts depend on the processing speed of
the machine where the algorithm is run. Those
simulations were run on an Intel Xeon CPU 2.53GHz
processor.

Rather than observing the absolute values, it is
interesting to analyze the impact of changes in the
parameters values. In particular, an increasing
number of Ns increases MCT/Tc for a given Tc/Tp.
Similarly, an increasing of MCT/Tc as the number of
internal knots Nknots increases from charts 4a to 4c
is noticed.

Further analyses of those data show that finding the
solution using the SLSPQ method requires O(N3

knots)
and O(Ns) time. Although augmenting Nknots can
yield to an impractical computation time, typical
Nknots values did not need to exceed 10 in our
simulations, which is a sufficiently small value.

6

DEMUR’15
http://robotics.fel.cvut.cz/demur15/ Trajectory Generation Approach

Table 1. Values for scenario definition

vmax 1.00 m/s
ωmax 5.00 rad/s
qinital [−0.05 0.00 π/2]T

qfinal [0.10 7.00 π/2]T

uinitial [0.00 0.00]T

ugoal [0.00 0.00]T

O0 [0.55 1.91 0.31]
O1 [−0.08 3.65 0.32]
O2 [0.38 4.65 0.16]

0.2 0.3 0.4 0.5 0.6
Tc/Tp

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

M
C
T
/T

c

Computation cost behavior

Ns =10

Ns =11

Ns =12

Ns =13

Ns =14

Ns =15

(a) . Four internal knots

0.2 0.3 0.4 0.5 0.6
Tc/Tp

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

M
C
T
/
T
c

Computation cost behavior

Ns =10

Ns =11

Ns =12

Ns =13

Ns =14

Ns =15

(b) . Five internal knots

0.2 0.3 0.4 0.5 0.6
Tc/Tp

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

M
C
T
/T

c

Computation cost behavior

Ns =10

Ns =11

Ns =12

Ns =13

Ns =14

Ns =15

(c) . Six internal knots

Figure 4. Three obstacles scenario simulations

Another parameter having direct impact on the
MCT/Tc ratio is the detection radius of the robot’s
sensors. As the detection radius of the robot increases,
more obstacles are seen at once which, in turn,
increases the number of constraints in the optimization
problems. The impact of increasing the detection
radius dsen in the MCT/Tc ratio can be seen in
Figure 5 for a scenario with seven obstacles. The
computation time stops increasing as soon as the

0 2 4 6 8 10 12 14 16
db,sen(m)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
C
T
/
T
c

MCT/Tc and detection radius relationship

Fitted Curve (−5.29 exp(−0.50 ρd) +3.23)

Original Data

Figure 5. Increasing of detection radius and impact
on a MT C/Tc ratio

robot sees all obstacles present in the environment.

4.1.2. Obstacle penetration P

Obstacle penetration area P gives a metric for obstacle
avoidance and consequently for the solution quality.
A solution where the planned trajectory does not
pass through an object at any instant of time gives
P = 0. The solution quality decrease with increasing P.
However, since time sampling is performed during the
optimization, P is usually greater than zero. A way
of assuring P = 0 would be to increase the obstacles
radius computed by the robot’s perception system by
the maximum distance that the robot can run within
the time spam Tp/Ns. However simple, this approach
represents a loss of optimality and is not considered
in this work.
It is relevant then to observe the impact of the

algorithm parameters in the obstacle penetration area.
Tc/Tp ratio, Nknots and dsen impact on this criteria
is only significant for degraded cases, meaning that
around typical values those parameters do not change
P significantly. However, time sampling Ns is a
relevant parameter. Figure 6 shows the penetration
area decreasing as the number of samples increases.

10 12 14 16 18 20 22 24 26
Ns

0
10
20
30
40
50
60
70
80
90

P
(c
m

2
)

Time sampling and obstacle penetration relationship

P(N_s)

Fitted Curve (9395.01 exp(−0.48 Ns) +3.13)

Figure 6. Obstacle penetration decreasing as
sampling increases

4.1.3. Travel time Ttot

Another complementary metric for characterizing
solution quality is the travel time Ttot. Analyses of
data from several simulations show a tendency that
for a given value of Nknots, Ns and Tc the travel time
decreases as the planning horizon Tp decreases. This
can be explained by the simple fact that for a given
Tc, a more optimal solution (in terms of travel time)
can be found if the planning horizon Tp is smaller.

7

José M. Mendes Filho, Eric Lucet http://robotics.fel.cvut.cz/demur15/
DEMUR’15

Another relevant observation is that the overall travel
time is shorter for smaller Ns’s. This misleading
improvement does take into account the fact that the
fewer the samples the greater will be the obstacle
penetration area as shown previously in Figure 6.

Furthermore, Figure 7 shows travel time invariance
for changes in the detection radius far from degraded
values that are too small. This points out that a
local knowledge of the environment provides enough
information for finding good solutions.

0 2 4 6 8 10 12 14 16
db,sen(m)

16.0

16.5

17.0

17.5

18.0

18.5

19.0

T
to
t
(s

)

Total execution time and detection radius relationship

Figure 7. Increasing of detection radius and impact
on Ttot

5. Conclusions
A distributed motion planner based on a receding
horizon approach, modified for taking into account
termination constraints, was proposed. Near the
goal configuration neighborhood, the receding horizon
approach is finished and a termination planning
problem is solved for bringing the robots to their
precise final state. The problem is stated as a
constrained optimization problem. It minimizes
the time for reaching a goal configuration through
a collision-free trajectory securing communication
between robots. Circle and convex polygon
representation of obstacles are supported. Key
techniques for implementing the motion planner are:
system flatness property, B-spline parameterization
of the flat output and SLSQP optimizer. Finally,
solutions using this planner for different scenarios were
generated in order to validate the method. Impact of
different parameters on computation time and quality
of the solution was analyzed. Future work will be
performed in physics simulation environment where
dynamics is taken into account as well as sensors
models and communication latency.

References
[1] S. Robarts. Autonomous robots are helping to pack
your Amazon orders. http://www.gizmag.com/
amazon-kiva-fulfillment-system/34999/. Accessed:
2015-07-22.

[2] Idea Groupe met en place Scallog pour sa
prÃľparation de commandes.
http://supplychainmagazine.fr/NL/2015/2085/.
Accessed: 2015-07-22.

[3] F. Borrelli, D. Subramanian, a.U. Raghunathan,
L. Biegler. MILP and NLP Techniques for centralized

trajectory planning of multiple unmanned air vehicles.
2006 American Control Conference pp. 5763–5768, 2006.
doi:10.1109/ACC.2006.1657644.

[4] G. Sanchez, J.-C. Latombe. On delaying collision
checking in PRM planning: Application to multi-robot
coordination. The International Journal of Robotics
Research 21(1):5–26, 2002.
doi:10.1177/027836402320556458.

[5] O. Khatib. Real-time obstacle avoidance for
manipulators and mobile robots. In Autonomous Robot
Vehicles, pp. 396–404. Springer Science and Business
Media, 1986. doi:10.1007/978-1-4613-8997-2_29.

[6] M. Defoort, A. Kokosy, T. Floquet, et al. Motion
planning for cooperative unicycle-type mobile robots
with limited sensing ranges: A distributed receding
horizon approach. Robotics and Autonomous Systems
57(11):1094–1106, 2009.
doi:10.1016/j.robot.2009.07.004.

[7] C. Ericson. Real-Time Collision Detection. M038/the
Morgan Kaufmann Ser. in Interactive 3D Technology
Series. Taylor & Francis, 2004.

[8] T. Keviczky, F. Borrelli, G. J. Balas. Decentralized
receding horizon control for large scale dynamically
decoupled systems. Automatica 42(12):2105–2115, 2006.
doi:10.1016/j.automatica.2006.07.008.

[9] M. Defoort. Contributions à la planification et à la
commande pour les robots mobiles coopératifs. Ecole
Centrale de Lille 2007.

[10] M. B. Milam. Real-time optimal trajectory generation
for constrained dynamical systems. Ph.D. thesis,
California Institute of Technology, 2003.

[11] SciPy - Scientific Computing Tools for Python.
http://www.scipy.org/. Accessed: 2015-07-31.

[12] D. Kraft. A software package for sequential quadratic
programming. DLR German Aerospace Center âĂŞ
Institute for Flight Mechanics, Koln, Germany, 1988.

[13] Runtime errors for large gradients.
http://comments.gmane.org/gmane.science.
analysis.nlopt.general/191. Accessed: 2015-07-27.

8

http://www.gizmag.com/amazon-kiva-fulfillment-system/34999/
http://www.gizmag.com/amazon-kiva-fulfillment-system/34999/
http://supplychainmagazine.fr/NL/2015/2085/
http://dx.doi.org/10.1109/ACC.2006.1657644
http://dx.doi.org/10.1177/027836402320556458
http://dx.doi.org/10.1007/978-1-4613-8997-2_29
http://dx.doi.org/10.1016/j.robot.2009.07.004
http://dx.doi.org/10.1016/j.automatica.2006.07.008
http://www.scipy.org/
http://comments.gmane.org/gmane.science.analysis.nlopt.general/191
http://comments.gmane.org/gmane.science.analysis.nlopt.general/191

	Acta Polytechnica 00(0):1–8, 0000
	1 Introduction
	2 Problem Statement
	2.1 Assumptions
	2.2 Constraints and cost functions

	3 Distributed motion planning
	3.1 Receding horizon approach
	3.2 Motion planning termination
	3.3 Strategies for solving the constrained optimization problems
	3.3.1 Flatness property
	3.3.2 Parametrization of the flat output by B-splines
	3.3.3 Optimization solver

	4 Simulation results
	4.1 Parameters' impact
	4.1.1 Maximum computation time over computation horizon MCT/Tc
	4.1.2 Obstacle penetration P
	4.1.3 Travel time Ttot

	5 Conclusions
	References

