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ABSTRACT. Fleet automation often involves solving several, strongly correlated sub-problems, including task
allocation, motion planning, and coordination. Solutions need to account for very specific, domain-dependent
constraints. In addition, several aspects of the overall fleet management problem become known only online. We
propose a method for solving the fleet-management problem grounded on a heuristically-guided search in the
space of mutually feasible solutions to sub-problems. We focus on a mining application which requires online
contingency handling and accommodating many domain-specific constraints. As contingencies occur, efficient
reasoning is performed to adjust the plan online for the entire fleet.
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1. INTRODUCTION

Autonomous vehicles are becoming key components in in-
dustrial automation. State-of-the-art methods for localiza-
tion, mapping, control and motion planning have enabled
the development and deployment of autonomous vehicles
in logistics, material handling, and mining application. Yet
important hindrances remain when it comes to employing
fleets of autonomous vehicles [1]. This paper is concerned
with three of these hindrances:

• Fleet automation often involves solving several, strongly
correlated sub-problems — among these, allocating
tasks to vehicles, planning vehicle motions, and vehicle
coordination. This makes solving the overall problem
very hard, as solutions should be found in the space of
mutually-feasible solutions to sub-problems.

• Solutions often need to account for very specific,
domain-dependent constraints. Thus, even if methods
exist for solving individual sub-problems, these often
need to be adapted to reflect the nuances of the particular
domain.

• Several aspects of the overall fleet management problem
become known only online. This makes it necessary
to compute at least parts of the solution to the overall
problem during execution and/or to adapt existing plans
to contingencies.

In this paper, we propose a method to divide the overall
fleet-management problem into sub-problems. We apply
a general method for searching for a mutually feasible
solution to the sub-problems of the overall problem. We
focus on a mining application where fleets are composed
of surface drilling machines. The aim is to plan and co-
ordinate blast-hole pattern drilling with multiple drilling
machines. Solutions consist of an executable plan for mul-
tiple vehicles operating concurrently within a common
area of the open-pit mine, called a bench (see Figure 1).
Several aspects of the problem become known only online:

the duration of hole-drilling actions depends on the hard-
ness of the rock, which is unknown at planning time; the
durations of navigation actions between targets are also
unknown at planning time, as they depend on the actual
state of the terrain; and unplanned stops may occur due to
the fact that drills may get stuck and need to be replaced.
All three forms of contingencies are modeled as metric
temporal constraints, and are posted online to a common
representation that maintains the state of execution of the
plan for the entire fleet. As temporal constraints become
known during execution, efficient temporal reasoning is
performed to adjust the plan and to provide an optimistic
Time to Completion (TTC) of the overall plan for the entire
fleet.

FIGURE 1. Two AtlasCopco drilling machines (Pitviper-351)
in the process of drilling targets in a bench.

In Section 2 we define the Drill Pattern Planning Prob-
lem and state the specific requirements of the applica-
tion. Section 3 details how the problem is divided into
sub-problems, and Section 4 describes the algorithm used
to find mutually feasible solutions to the individual sub-
problems. Section 5 describes the domain-specific heuris-
tics that capture the nuances of this particular mining appli-
cation and how they can be easily plugged into the search
for a solution. Section 6 is dedicated to the online aspects
of the approach. A preliminary experimental evaluation
is provided in Section 7, which evaluates the feasibility

1



M. Mansouri, H. Andreasson, F. Pecora http://robotics.fel.cvut.cz/demur15/
DEMUR’15

of on-line plan adaptation in a simulated environment. A
brief discussion on related work and outlook concludes the
paper.

2. PROBLEM DEFINITION AND
REQUIREMENTS

We focus on a problem in a mining application, where a
fleet of surface drills operates on a bench in an open-pit
mine. A set of drill targets in the bench is given; at each
target, a blast hole is to be drilled. The blast holes are then
filled with explosive material that will be detonated after
all targets have been drilled. After the explosion, the ore is
taken away and processed for mineral extraction.

For each drill target, a machine can autonomously carry
out a set of tasks: auto-tramming (navigating to the target
from its current position), leveling (deploying jacks for hor-
izontally leveling the machine), drilling, and de-leveling
(retracting the jacks so the machine is placed back on its
tracks). Each drilling machine has a square dust guard
around its drill bit. Drilling produces piles of excess mate-
rial around the hole, thus one side of the dust guard must
be lifted after drilling; this allows the machine to navigate
to the next target without colliding with the pile that has
accumulated under it after drilling (see Figure 2).

FIGURE 2. The actuated dust guard and leveling jacks are
highlighted on an Atlas Copco Pitviper-271. After drilling,
piles of excess material accumulate under the dust guard,
which requires the machine to actuate the dust guard before
navigating away from the target.

The Drill Pattern Planning Problem (DP3) consists of
computing a plan that involves machines reaching each
drill target in a bench and performing the necessary op-
erations to drill the blast hole. The plan is subject to the
following requirements:

• Machines should not collide with obstacles/each other;

• Drilling a target leads to the creation of a pile under
the dust guard of the machine; this pile constitutes an
obstacle, hence no machine can drive over it;

• Once drilling has been performed, the machine can only
drive away from the target (backing up from the target
pose) by raising the forward dust guard (the only part of
the dust guard that can be actuated);

• Motions should be executable by the machines i.e., mo-
tions should be kinematic feasible;

• It should be possible to modify the plan online;

• The plan should respect spatial constraints such as a
virtual fence within which the vehicles are allowed to
operate; this area is called a geofence.

The locations of drill targets and the geofence are given.
These are based on a geological survey of the area and on
the current production targets of the mine (see Figure 3).
A set of machinesR is also given, and the size of a fleet is
based on the size of the bench. Also given are initial poses
of all machines, as well as their desired final “parking”
poses.

FIGURE 3. A bench with drill targets (grey circles) and a
geofence (green polygon).

The requirements above pose several problems e.g., task
allocation (of machines to target poses), motion planning,
and coordination. These problems cannot be treated sep-
arately, as the solutions of each problem depend on each
other. For instance, coordination must lead to a sequence
of target poses that accounts for the piles generated after
drilling (which become obstacles that must be taken into
account in motion planning). Hence, it is necessary to
subject the possible choices made to solve one problem to
the choices made in resolving the other problems — e.g.,
verifying through motion planning that a chosen sequence
of targets to drill will be kinematically feasible. Because
of these interdependencies, we face a hybrid reasoning
problem. We propose an approach in which the overall
problem is divided into sub-problems, and the solution
to the overall problem is searched for in the joint search
space of these sub-problems. In the next section, we define
each sub-problem in detail, while in Section 4 we outline
the algorithm used to search for plans that are mutually
feasible with respect to all the sub-problems.

3. APPROACH

We divide the DP3 into five sub-problems.

• The sequencing sub-problem consists of deciding a total
ordering of targets i.e., sequencing every pair of targets.

• The moition planning sub-problem consists of deciding
the pose of drilling machines at each target. Constraints
on the orientation of the machine in certain target poses
may be given (e.g., due to the presence of the geofence or
other geographical constraints like cliffs and walls). The
decisions are subject to kinematic constraints, obstacles
and geofence, and must account for piles resulting from
drilling, as well as the dust guard mechanism.

• The machine allocation sub-problem consists of allocat-
ing machines to targets given the available machines and
their positions. Machine allocation also accounts for the
need to reach a given end parking position.
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• The coordination sub-problem consists of scheduling
machines. Solutions to this sub-problem consider spatio-
temporal overlap between machines and between ma-
chines and piles.

• The temporal sub-problem consists of deciding when
machines should carry out motion, drilling, leveling
and de-leveling operations, subject to temporal con-
straints arising from coordination, sequencing, maxi-
mum achievable speeds, etc.

A solution to DP3 is obtained by reasoning upon these
five different sub-problems jointly. Candidate solutions for
a sub-problem are validated by dedicated solvers. Each
solver focuses on a subset of aspects of the overall problem,
e.g., a motion planner verifies kinematic feasibility and ab-
sence of collisions, while a temporal solver verifies that
coordination choices are temporally feasible. Validated
solutions for each sub-problem can be see as constraints
that account for particular aspects of the overall problem.
They are maintained in a common representation, which
is sufficiently expressive to model the search space of all
problems jointly. The common representation is a con-
straint network where variables represent missions. A
mission is a tuple M = (gp, sp, r, P,m, S, T,A), where r
represents the robot which should perform the set of activ-
ities A = {drilling, leveling, de-leveling} at, respectively,
starting pose sp and goal pose gp. P is the path that r
traverses to reach gp from sp, and is computed based on a
map m of the environment. S is a set of polygons repre-
senting sweeps of the robot’s footprint over P , and T is a
set of time intervals representing when r will be in each
polygon contained in S. Henceforth, we denote with M(·)
an element of the mission tuple.

Let M be the set of all missions in the DP3 (one for
each drill target). A solution to the DP3 is such that a value
is decided for all elements of a mission, for each mission
in M ∈ M. Each element is decided by solving one or
more sub-problems. We view a mission M as a variable
in a Constraint Satisfaction Problem (CSP, see [2]) whose
domain represents all possible combinations of values that
can be given to each element of M . Accordingly, we
view a sub-problem as the problem of constraining the
domains of missions so the requirements stated above are
met. Hence, the solvers that validate solutions to the sub-
problems are seen as procedures that post constraints to
the common constraint network. As we will see, adopting
the CSP metaphor allows us to employ heuristic search
strategies for solving the overall DP3.

3.1. SEQUENCING SUB-PROBLEM

The sequencing sub-problem consists of finding a total
order of missions. A decision variable of this sub-problem
is a mission Mi ∈ M that does not have a preceding
mission. A possible value that can be assigned to this

decision variable is a precedence constraint Mj
precedes−−−−→

Mi, asserting that mission Mj ∈M should occur before
Mi. Mj is a mission for which it has not been already
decided that it precedes another mission. A sequencing
solver verifies that missions are totally ordered. Figure 4(a)

shows an example of decision in this sub-problem, namely

M166
precedes−−−−→M137. White arrows in the figure represent

precedence constraints.

3.2. MOTION PLANNING SUB-PROBLEM

The motion planning sub-problem consists of finding a goal
pose gp for each missionMi ∈M. A gp is a tuple 〈x, y, θ〉
in which x and y represent the position of a drill target, and
θ is the orientation of the machine. The decision variables
of the motion planning sub-problem are missions Mi such
that (1) Mi(gp) does not have a defined orientation, i.e., θ

is not assigned to an angle, (2) there existsMj
precedes−−−−→Mi

in the common constraint network, and (3) Mj(gp) has
been assigned an orientation. Possible values that can be
assigned to a decision variable are a set of eight angles
{θ1, . . . , θ8} ∈ [0, 2π).

A particular choice of approach angle for a mission is
only feasible if the machine can drive away from the pre-
vious target Mj(gp) and can navigate to the end pose of a
missionMi(gp) considering piles created by all the preced-
ing missions. For example, Figure 4(b) shows a selection
of one feasible approach angle for several missions with
respect to existing sequencing constraints. The approach
angles are represented by pink arrows, and the machines
drive away from the targets in the opposite direction of the
pink arrows.

The eight possible assignments to the decision vari-
able determine eight different possible end poses of the
machine {Mi(gp1), . . . ,Mi(gp8)}, which differ only in
the orientation of the machine in the goal pose. A pos-
sible assignment θk is validated through a path plan-
ner, which is given the triple (Mi(sp),Mi(gpk),Mi(m)),
where the start pose is the goal pose of the preceding mis-
sion (Mi(sp) = Mj(gp)), and Mi(m) is a map of the
environment that contains obstacles and a geofence. The
obstacles correspond to circular shapes centered in the goal
poses of the preceding missions. Through the map Mi(m),
the path planner accounts for targets that have already been
drilled prior to mission Mi.

Since the path planner is invoked potentially several
times while solving the motion planning sub-problem,
computational efficiency is crucial. We employ a path
planner for a car-like mobile robot based on cubic spi-
rals [3]. This path planner computes paths consisting of
curvature-constrained curves constituted by few cubic spi-
rals and straight lines. The output of the path planner is
either fail, which indicates that a particular approach
angle θk cannot be achieved, or the spline Mi(P ), repre-
senting a kinematically-feasible and obstacle-free motion
from Mi(sp) to Mi(gpk).

3.3. MACHINE ALLOCATION SUB-PROBLEM

In this sub-problem, a decision variable is a setM′ ⊆M
such that ∀M ∈M′, M(r) has not been decided and

∃Mi ∈M′ : Mi
precedes−−−−→M ∨M precedes−−−−→Mi,

that is, a total order of missions has been decided, but
machines have not been allocated. The values are com-
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FIGURE 4. Examples of different sub-problems with their decision variables and particular choices of values.

plete assignments of robots to missions, i.e., an assignment
M(r) = R for each missions inM′.

Clearly, the machine allocation sub-problem has a huge
space of possible solutions. Each possible solution has
complex ramifications on other sub-problems: different
allocations will affect the amount of coordination neces-
sary; allocations must be such that the final mission of a
machine is not surrounded by piles (drilled by other ma-
chines), which would make it impossible to navigate to its
final parking pose. As we show in Section 5, heuristics
with high pruning power are needed to explore the search
space of this sub-problem, and these heuristics must ac-
count for other sub-problems. Solutions to the machine
allocation sub-problem are indirectly validated in other
problems, hence no particular solver is used for direct
validation of possible values.

3.4. TEMPORAL SUB-PROBLEM

A mission’s path P is segmented into a sequence of sub-
paths based on its curvature. Each segment is associated
to a convex polygon sk resulting from the sweep of the
machine’s footprint along the sub-path. The resulting se-
quence {s1, . . . , sm} of convex polygons represents the
areas occupied by a robot while navigating along the path
(see an example in Figure 4(c)). Since the path planner
used to obtain P is aware of the obstacles created by pre-
ceding missions, the convex polygons do not intersect the
piles resulting from drilling (see Figure 4(d), where red
circles represent piles, white polygons the motions of the
machine, and the green line represents the geofence).

In addition to the polygons representing the motion of
machines, the activities involved in a mission M (i.e.,
M(A) = {drilling, leveling, de-leveling}) have polygons
associated to them. Since these activities all occur while
the machine is idle in pose M(gp), their polygons co-
incide with the polygon that covers the last sub-path of
M(P ). Hence, the set of all convex polygons of mission
M isM(S) = {s1, . . . , sm}∪{sdrilling, sleveling, sde-leveling},
where sdrilling = sleveling = sde-leveling = sm.

Each convex polygon in M(S) is associated to a time
interval in the set M(T ) = {I1, . . . , Im+3}. Inter-
val Ik = [Is, Ie] is a flexible temporal interval within
which robot M(r) is in sk, where Is = [ls, us], Ie =
[le, ue], ls/e, us/e ∈ N represent, respectively, an interval
of admissibility of the start and end times of the occurrence
of polygon sk ∈ S.

The temporal sub-problem consists of deciding a start
and end time for each interval Ik. The temporal sub-
problem has a decision variable for every machine R ∈ R.
Each decision variable is a set of missions M′ ⊆ M
such that for all Mi ∈ M′, (1) Mi(P ) has been decided,
(2) Mi(r) = R, and (3) the start and end times of Mi(T )
have not been decided. We reduce the problem of de-
ciding valid start/end times of the intervals to a Simple
Temporal Problem (STP, [4]). The STP is formulated as
a collection of temporal constraints as follows. First, for
each Mi ∈ M′ with intervals Mi(T ) = {I1, . . . , Im+3},
temporal constraints that reflect the order of the convex
polygons along the path Mi(P ) are imposed:

Ik−1
before−−−→ Ik, k ∈ {2 . . .m+ 3}. (1)

Second, temporal constraints that force the possible start
and end times of missions to adhere to the ordering decided
by the sequencing solver are added. That is, for each pair
of missions (Mi,Mj) ∈ M′ × M′ that are subject to

a sequencing constraint Mi
precedes−−−−→ Mj , the following

temporal constraint is added among the intervals Mi(T ) =
{Ii

1, . . . , I
i
m+3} and Mj(T ) = {Ij

1 , . . . , I
j
m+3}:

Ii
m+3

before−−−→ Ij
1 , (2)

reflecting the fact that the de-leveling polygon of mission
Mi occurs before the first motion of missionMj . Third, we
impose minimum durations of the motions and activities
of the machines:

Duration[α,∞) Ik, k ∈ {1 . . .m+ 3}. (3)

For every motion polygon sk, k ∈ {1, . . . ,m}, an initial
value for α is computed based on the maximum allowed
velocity of machine R. Hence, the earliest time solution
of the STP represents the fastest possible execution of all
motions and activities in the plan, i.e., an “optimistic” es-
timate of the start and end times of all operations of all
machines. During execution, further temporal constraints
can be added to reflect contingencies such as machine main-
tenance, delays, and so on. The association of an interval
per polygon allows us to predicate via temporal constraints
on how long every movement or activity will take. Solving
the STP is polynomial in the number of intervals in the
temporal problem, namely

∑
Mi∈M′ |Mi(T )| [4].

Note that there are no temporal constraints among inter-
vals pertaining to different machines, hence the motions
and activities of different machines may be concurrent.
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3.5. COORDINATION SUB-PROBLEM

Since several machines operate in the same environment,
it is crucial to address collision/deadlock avoidance. As

FIGURE 5. Coordinating two machines to avoid spatio-
temporal overlap.

a consequence of decisions made in all previous sub-
problems, the common constraint network includes poly-
gons, temporal intervals, and temporal constraints (eqs. (1)
to (3)) among them. The STP solver computes start and end
times for each interval. This determines when machines
will occupy motion and activity polygons in the various
missions. If two polygons pertaining to different vehi-
cles overlap, and their corresponding temporal intervals
intersect, then the two vehicles may collide. Coordination
avoids this by imposing additional constraints that elimi-
nate temporal intersection where needed. Decision vari-
ables of the coordination sub-problem are pairs of polygons
and intervals represented by quadruple (si

k, s
j
m, I

i
k, I

j
m), of

mission i and j respectively, that overlap both spatially and
temporally, i.e., si

k ∩ sj
m 6= ∅ ∧ Ii

k ∩ Ij
m 6= ∅ ∧Mi(r) 6=

Mj(r). The value of a decision variable is one of two pos-

sible constraints {Ii
k

before−−−→ Ij
m, I

j
m

before−−−→ Ii
k}, imposing

either of which eliminates the temporal overlap between
concurrent polygons. The STP solver will validate the
sequencing in time of these two overlapping polygons ac-
cordingly. It will also compute the consequent shift in the
occurrence of any other polygon whose interval is con-
strained with Ij

m or Ii
k by means of temporal constraint

propagation within the common constraint network. We
use a similar approach for the coordination of multiple
vehicles as described in [1]. Figure 5 depicts the situation
where missions of two machines are temporally and spa-
tially overlapping. Polygons with the same color belong to
one machine and for clarity, we omit the time intervals of
polygons in the visualization.

The polygons involved in the decision variables repre-
sent two types of occupancy. The first type corresponds to
the motions of machines as described in 3.4. The second
corresponds to the piles created by drilling. By modeling
both types of polygons in the common constraint network,
collisions among machines and with piles are found and
thus scheduled. Figure 6 illustrates a conflicting situation
between the motions of a machine (depicted as yellow
polygons) and a pile (depicted as a blue polygon).

FIGURE 6. Scheduling a machine to avoid spatio-temporal
overlap with a pile

4. BACKTRACKING SEARCH

The collection of decision variables for each sub-problem
mentioned above constitutes a high-level CSP (henceforth
called meta-CSP). Search in the meta-CSP consists in find-
ing an assignment of values to decision variables that rep-
resent high-level requirements. Each of these requirements
is, in our case, a sub-problem. Possible values among
which these assignments are selected are verified by a spe-
cific solver for each sub-problem. Thanks to the common
representation of the search space, each sub-problem solver
accounts for the assignments made for decision variables
of other sub-problems. For example, the path planner vali-
dates with respect to a map containing obstacles resulting
from sequencing decisions; and the coordinator’s decisions
depend on the machine allocation as well as motion plans.
The choices of values for decision variables in the various
sub-problems contribute parts of the missions in the com-
mon representation, and the sub-problem solvers propagate
the consequence of these decisions.

The sub-problem solvers used in our approach are
denoted in the following with solve-p, where p ∈
{seq,alloc,time,coord,mp}. As we have ex-
plained, solve-seq disallows sequencing decisions that
are not totally ordered; solve-mp verifies by means of a
motion planner that motions are kinematically feasible and
obstacle-free; solve-alloc accepts all candidate allo-
cations, as the infeasible ones are discovered indirectly via
coordination; solve-time is a STP solver which com-
putes feasible start/end times of mission intervals subject
to temporal constraints; solve-coord is also provided
by the same STP solver, which validates and computes the
consequences of temporal ordering decisions.

We use a CSP-style heuristically guided backtracking
search to find values to assign to the decision variables.
Henceforth, let the set of sub-problems be indicated by

Function DP3-solver(M): success or failure

Dseq ∪Dalloc ∪Dtime ∪Dcoord ∪Dmp ← CollectDVars(M)1
if ∃Di 6= ∅, i ∈ {seq, alloc, time, coord, mp} then2

p← Choose({seq, alloc, time, coord, mp},hprob)3
d← Choose(Dp, hvar

i )4
Vd ← CollectValues(d)5
while Vd 6= ∅ do6

v ← Choose(Vd, hval
i )7

Update(M, v)8
if Solve-p(M) then9

return DP3-solver(M)10

Remove(M, v)11
Vd ← Vd \ v12

return failure13

return success14

the symbols {seq, alloc, time, coord,mp}. Given the set of
missionsM, Algorithm DP3-solver collects all the de-
cision variables belonging to all the sub-problems (line 1),
and terminates when no decision variables are left (lines
2 and 14). A particular sub-problem is then chosen ac-
cording to a sub-problem ranking heuristic hprob (line 3),
e.g., hprob prioritizes machine allocation decision variables
over coordination decision variables, as the latter problem
requires machines to be assigned to missions (see Sec-
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tion 3.5). Among the decision variables of a sub-problem,
one is chosen according to a variable ordering heuristic hvar

i

(line 4). For example, which target should be selected first
among the decision variables Dmp of the motion planning
sub-problem. Among possible alternative values, one is
chosen according to a value ordering heuristic hval

i (lines 5–
7). For instance, which approach angle has to be selected
for a given target in the motion planning sub-problem. This
value is added to the common representation (line 8). The
sub-problem solver solve-p verifies that the assignment
v is feasible. If so, DP3-solver is called recursively
(line 10), which results in selecting another unassigned
variable subject to the newly updated common representa-
tionM. Note that if all possible values are attempted for a
decision variable d and all are rejected by solve-p, the al-
gorithm returns failure (lines 6, 11–13). In the next section,
we will explain the problem-, variable- and value-ordering
heuristics that are used in DP3-solver.

5. HEURISTICS

DP3-solver must select a set of decision variables per-
taining to a sub-problem from the union of all decision
variables. This selection is guided by a heuristic hprob. Let
Di ≺ Dj indicate that the decision variables of problem
i have a higher priority than those of problem j. The par-
tial ordering based on which the hprob heuristic operates
is {Dseq ≺ Daloc ≺ Dtp ≺ Dcoord, Dmp ≺ Daloc ≺ Dtp ≺
Dcoord}. Decision variables to branch on (within a chosen
Di) are ordered based on hvar, and alternative values are
chosen according to hval.

Variable ordering heuristics are provided for the sequenc-
ing sub-problem and for the coordination sub-problem.
The latter heuristic is based on temporal flexibility and
has been used for resource-constrained project schedul-
ing [5]. The former is based on an analysis of the drill
target placements, and is described below.

Variable Ordering for Sequencing hvar
seq . The pattern of

drill targets is analysed to reveal its topology and the pos-
sible principal directions of drill target sequencing (see
Figure 7). To determine the former, we use a distance
threshold; the latter are discovered via a K-Means clus-
tering of the set of angular coefficients of topologically
neighbouring drill targets. This yields clusters containing
similarly oriented edges of the topology. These are used
to group drill targets into roughly-parallel lines (see Fig-
ure 7). The topology and the groupings are used to rank
drill targets in groups. Variable in these groups are first in
the sequencing sub-problems.

FIGURE 7. An example of topology and group extraction.

Value ordering heuristics are defined for the sequenc-
ing, allocation, motion planning, and coordination sub-
problems. As for variable ordering, the decision variable
in the coordination sub-problem are branched upon using
a heuristic based on temporal flexibility that is widely used
in the scheduling literature [1]. The remaining heuristics
hval

seq, hval
allocare explained below.

Value Ordering for Sequencing hval
seq. A value for a de-

cision variable of the sequencing sub-problem decides
which drill target precedes a given target. There are many
alternatives for this choice. Note that sequencing deci-
sion variable that are resolved first are those pertaining to
drill targets along groups — for such decision variables,
the heuristic prioritizes one of two possible predecessors,
namely those adjacent to the current decision variable in
the grouping. For example, the two values with highest
heuristic score for decision variable M141 in Figure 4(a)

are M142
precedes−−−−→M141 and M140

precedes−−−−→M141.
Also, this heuristic contributes to alleviating the com-

putational burden of finding sequences in regions close to
the geofence while transitioning between groups. Finding
a feasible sequence in these situations is challenging be-
cause a machine has limited space to manoeuvre. These
regions of highly-constrained motion span typically eight
targets for every pair of adjacent groups, thus in the worst
case sequencing requires verifying, through motion plan-
ning, 87 possible motions for each pair. For this reason,
the heuristic uses given sequence patterns that reflect com-
mon practice by human operators. A sequence pattern

FIGURE 8. An example of sequence pattern given by an
operator.

is a topological description of a human driving behavior,
augmented with metric information that facilitates assess-
ing whether the pattern is applicable in a given region.
Specifically, a sequence pattern is a graph (V,E) where
V is a set of nodes representing drill targets, and E is a
sequence of precedence constraints among the nodes. A
distance threshold dgeofence is also given, and represents the
minimum distance to the geofence required for the pattern
to hold. Also, a ranking < of the nodes in terms of how
far they lie from the geofence is provided. An example
pattern is shown in Figure 8. If the search is considering a
decision variable Mi that is surrounded by targets that can
be mapped to the nodes in the pattern, then the heuristic
ranks possible predecessors of Mi according to the edges
in E.

Value Ordering for Motion Planning hval
mp. This heuris-

tic suggests approach angles similar to those assigned to
other drill targets in a same group.
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Value Ordering for Machine Allocation hval
alloc. A so-

lution to the machine allocation sub-problem determines
which drill target is drilled by which machine. Among
all possible choices, those are preferred which have three
properties: (1) each machine is assigned to a contiguous
sequence; (2) start and end missions of a contiguous se-
quences are the drill targets close to an open area, i.e.,
not close to a geofence and not those that are entirely sur-
rounded by other drill targets; and (3) targets are evenly
distributed among machines. This heuristic not only con-
tributes to the plan quality in terms of similarity to what
a human planner would decide, but also improves the effi-
ciency in planning time by suggesting a restriction on start
and exit points for each machine.

6. ADAPTING SOLUTIONS ONLINE

Several aspects of the DP3 are unknown at planning time.
For example, the actual durations of activities only become
apparent during execution. In a bench, various types of
contingencies may occur, such as unexpected maintenance
of machines, or increased drilling time due to unknown ge-
ological characteristics of the terrain. Therefore, we need
to monitor the execution and reflect the contingencies in
the common representation. In our approach, the nominal
behavior of the machines is given by a solution of the DP3,
obtained via Algorithm DP3-solver. The start and end
times associated to the intervals M(T ) of every mission
M are computed through temporal propagation. All the
lower bounds represent the earliest possible times at which
missions can be executed, and are used to compute the de-
sired speeds at which the computed paths should be driven
by the vehicle executives. A machine executive realizes the
interface between machine controllers and the missions in
the plan by instructing the machine controller to follow the
given trajectories1. It also updates the time intervals M(T )
of the current mission by posting into the common rep-
resentation constraints representing the current progress
of the machine. These constraints are used by the STP
solver to propagate any mismatch between prescribed and
executed missions of all machines in the fleet.

The STP solver plays a central role in execution moni-
toring. Machine executives update the common representa-
tion at a frequency of 1Hz to dispatch or end missions. A
mission in ended by adding a temporal constraint into the
common constraint network representing the finish time
of the mission as the executive layer informs. The conse-
quences of such updates can be easily computed within
the period of one second because the STP solver performs
polynomial inference. Also, due to the fact that adding
constraints cannot “undo” other decisions, we can post
unforeseen durations (e.g., encountering hard rock while
drilling) at execution time. More precisely, the prolonga-
tion of an activity represented by a flexible time interval as-
sociated to a motion polygon cannot affect the sequencing,
the approach angle, the particular motions, nor machine

1In the current implementation, we employ a Model Predictive Con-
troller (MPC) [6].

allocations. It only bears consequences on the coordina-
tion sub-problem, as delays may need to be propagated
to other waiting machines. An example of this situation
is described in the next Section. Note that if we want to
minimize the TTC, then, prolongation of an activity should
lead to the re-allocation of the machines, which in turn
would result in updating the decisions in the sequencing
sub-problems. This allows for re-balancing the workload
among the machines. Considering the wide range of re-
planning strategies that can be used to minimize TTC is a
topic for future work.

On-line temporal reasoning also caters to another impor-
tant requirement of mining companies, namely the need to
know an estimate of the Total Time to Completion (TTC).
At planning time, we provide an optimistic TTC by initial-
izing the duration constraints 3 with reasonable values: the
durations of intervals corresponding to motion polygons
are computed using the maximum allowed speed of ma-
chines; and the intervals corresponding to activity polygons
are initialized with durations under nominal conditions (av-
erage rock density, and no maintenance). As execution
proceeds, TTC is updated as a result of temporal reasoning
to reflect the actual situation.

7. EXPERIMENTS AND EVALUATIONS

We carried out several experiments in different selections
of benches and drill targets. In this section, we exemplify
one of the most challenging ones. The resulting plan was
then run by a Gazebo-simulated fleet of Pitviper-311s, and
all interfaces between the DP3-solver and the platforms
were realized as ROS [7] nodes. The DP3-solver ran on
a 3.40GHz×4 Intel i7-3770M CPU with 8GB of memory.

The difficulty of the example originates from the close-
ness of some targets to the geofence. It is also affected by
the average distance between targets, which is 16 meters
(only 1.8 meters larger than the length of the Pitviper-311).
The drill target positions are taken from a real blast hole
pattern recently drilled in an open-pit iron-ore mine in
Western Australia. As noted earlier, problems become
much more difficult if they contain drill targets that are
close to the geofence, whereas when that is not the case
problems are easier, since machines have enough space to
manoeuvre regardless of how approach angles are chosen.
This experiment contains 76 drill targets and 3 available
machines. Figure 9 shows the final solution to the over-
all DP3 for this specific bench. In the figure, robots and
groups used by hvar

seq and hval
seq are numbered to facilitate the

explanation. As shown, machine 1 starts with row 1 and
exits the field from row 2, machine 2 starts at row 3 and
exits at row 4, and machine 3 starts its missions from row
6 and exits from row 5. The plan is found in 2.14 minutes.

Figure 10 shows three snapshots of a simulated run.
Each snapshot shows the motions of each robot (the col-
lection of all movement polygons). In Figure 10(a), the
motions of robot 1 partly occupy row 3 and 4 for manoeu-
vring between row 1 and 2. This results in robot 2 having
to wait just before the conflicting area, until robot 1 fin-
ishes its manoeuvre. As robot 2 also occupies some part of

7
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FIGURE 9. A solution to the DP3 problem in this bench
which is visualized in the ROS visualization tool, white ar-
rows depict sequencing, pink arrows represent vehicle poses
at each drill target, and the green line shows a part of the
geofence.

rows 5 and 6 (see Figure 10(b)), robot 3 has to wait until
robots 1 and 2 are finished switching rows.

The fact that the motions of machine 2 do not conflict
with row 1 and 2 is handled by the motion planner; the
same holds for machine 3 and rows 3 and 4 (see Fig-
ure 10(c)). As machines start their execution concurrently,
their motions would lead to collisions, were it not for the
fact that the coordination sub-problem was solved as well.
The temporal constraints that were selected by the algo-
rithm resolve these conflicts by forcing machines 2 and 3
to yield to machine 1.

The plan obtained with Algorithm DP3-solver was
run in simulation three more times. During the first run, we
artificially injected delays in the drilling activities of robot 1
for a drill target in row 1. Through temporal reasoning, the
delay was propagated on the start times of future missions
of machines 2 and 3. The TTC drastically increased as a
result, as robot 2 (and consequently robot 3) were forced
to wait until robot 1 finished manoeuvring between rows
1 and 2. In the second run, we artificially delayed robot 1
while drilling a target in the second row. In this case, TTC
only increased by the amount of the delay, since the delay
does not affect robot 2 and robot 3. Finally, in the third
run, we injected a delay in one of the initial drill targets
of robots 2 and 3. Since these robots were scheduled to
yield to robot 1 later on during execution, the delay did
not contribute to increasing the TTC. In all three runs, the
contingencies were accounted for by temporal reasoning
and the resulting adjusted plan dispatched to the machines
within the 1 second sampling period.

(a) (b) (c)

FIGURE 10. Motions of different robots represented on a
separate figure as white convex polygons

We also evaluate the effectiveness of the sequence pat-

27 53 76
hval

seq w/o sp 8.68 min timeout timeout
hval

seq w sp 0.21 min 0.6 min 2.14 min

TABLE 1. A small quantitative evaluation hval
seq

tern (sp, see Section 5) used by hval
seq on a problems defined

over the same drill pattern as used in the previous experi-
ments. We consider three cases with a different number of
drill targets (27, 53 and 76). Each case is run twice, once
with and once without the sp heuristic. The search process
is aborted after a 60 minute timeout. Table 1 shows the
strong pruning power of this heuristic.

In the next experiment, the focus is to evaluate the TTC
in a slightly bigger setup with 91 drill targets (see Fig-
ure 11). The TTC of the solution where machine 1 starts
at row 1 and exits at row 4 and machine 2 starts at row 5
and exits at row 8 is 101 minutes, whereas the TTC is 61
min in the case that machine 1 starts at row 4 and exits
at row 1 and machine 2 starts at row 5 and exits at row 8.
In the latter case, machines do not need to wait for each
other and all the operations can be done in parallel. In
order to extract the latter solution from the search space, an
ad-hoc sequencing heuristic built for this particular set of
drill targets was employed. This proves that this solution
is in the search space. As mentioned, devising a general
heuristic that biases sequencing choices to minimize TTC
is the topic of future work.

1

2

3

4

5

6

7

8

2

1

FIGURE 11. An high quality solution with respect to the
TTC for a bench with 91 drill targets

7.1. COMPARISON WITH A∗

Our approach consists in exploring the joint search space
of different sub-problems via a heuristically informed CSP-
style backtracking search. The intelligence in our approach
is distributed among several heuristics, each guiding the
resolution of specific sub-problems. An obvious alternative
approach is to define the state of the DP3 as node in a tra-
ditional heuristic search, and to employ A* (or some other
heuristic search algorithm) in conjunction with a heuris-
tic that accounts for all aspects of the DP3. We would,
however, have to build all aspects of the problem into this
single heuristic — that is, we would have to make the
heuristic capable of informing which are the best alloca-
tions of vehicles to targets, the best sequencing, grouping
and scheduling decisions, etc. More importantly, it would
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be difficult to exploit the structure of the different sub-
problems to enhance performance. In our approach, scala-
bility can be improved by identifying heuristics for specific
sub-problems and/or heuristics that exploit the hybrid na-
ture of the underlying representation. Another important
factor in industrial domains is the ability to specify domain-
dependent requirements, e.g., in this specific bench, that
drill targets 122 and 344 must be drilled at the end, or
that machine 3 should not drill a set of drill targets. The
modularity of our approach facilitates programming these
types of requirements in the relevant decision variables of
specific sub-problems.

8. RELATED WORK AND OUTLOOK

We divide the DP3 into several sub-problems and the
DP3-solver finds mutually feasible solutions to the indi-
vidual sub-problems. The idea of problem decomposition
and solution synthesis is not new in AI. There have been
many studies in Multi Agent Systems (MAS) regarding
cooperative problem solving [8]. Although our work has
not been done in the context of MAS, we reify this idea
into a challenging robotic domain.

The DP3-solver combines solutions from different
sub-problems, each of which can be seen as a “classical”
AI or robotics problem. The sequencing sub-problem can
be seen as a Vehicle Routing Problem with Multiple De-
pots (MDVRP) where the drill targets are the customers.
MDVRP is a combinatorial optimization which has been
largely studied. However, solutions to MDVRPs often do
not consider spatial, temporal and kinematic constraints,
nor dynamic maps. The need to consider these problems
destroys the assumptions based on which existing AI solu-
tions are built. As this comprehensive survey describes [9]
there are various modeling to the MDVRP including time
windows, split delivery, heterogeneous fleet according to
the single and multiple objectives. For future work, our
main focus is to optimize the TTC while all the require-
ments are upheld, therefore, casting the sequencing sub-
problem to MDVRP is an option for further investigation.

Combined route and motion planning in the presence
of strong spatial and temporal constraints has been stud-
ied [10]. Although the application differs, the proposed
approach is similar to ours in that it combines solutions
from different sub-problems such as non-trivial motion
planning and route planning. However, the solution as-
sumes that sequencing of goal poses is given and does not
handle on-line contingencies.

The coordination problem has to be addressed when we
have a fleet of autonomous vehicles. Many approaches to
this problem largely rely on fixed trajectories (e.g., [11] and
the KIVA system [12, 13]). This makes the coordination
problem much easier than in our case, where vehicle paths
are not known a priori. The coordination sub-problem
could be addressed by using multi-robot motion planners,
using a distributed approach [14] or solving the problem in
a centralized fashion [15]. The latter is similar to our work
in terms of using a centralized approach. However, multi-
robot motion planners are not efficient enough for use

within another search, and are unable to handle temporal
contingencies that may occurred on-line.

In this work, we break down a given hybrid problem and
identify interdependency among the sub-problems, and
interleave reasoning within each sub-problem. A heuris-
tically guided backtracking search finds a solution to the
overall problem in the joint search spaces of these sub-
problems. This approach is general and can be used in
other domains, such as task planning for mobile service
robots [16] or warehouse management [17].

In addition to focus to the optimization issue, another
aspect of our ongoing work is to broaden the range of
possible online contingencies (e.g., machine breakdowns
which require removing a machine) that can be dealt with
by our DP3-solver.
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