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Abstract
The thesis deals with the multi-goal path planning problem. The problem is studied

in the context of the inspection task of cooperating robots in a search and rescue mission.
Two models of the sensing are considered: continuous and discrete. An environment is a
priori known and it is represented by a polygonal domain in both approaches. The con-
tinuous sensing assumes relatively inexpensive cost of sensing in comparison to the cost
of motion and can be formulated as the Watchman Route Problem (WRP). The discrete
sensing leads to the decoupled approach that is motivated by problems where the cost
of sensing is dominant. The decoupled approach consists of two problems: the problem
of finding minimal set of sensing locations, and the multi-goal path planning problem to
find a path visiting the found locations. The set of sensing locations can be found as a
solution of the Art Gallery Problem (AGP) or sensor placement problem if additional vis-
ibility constraints have to be considered, e.g. visibility range, incident angle. The multi-
goal path planning problem can be formulated as the Traveling Salesman Problem (TSP)
in which paths between cities have to be traversable by the robot. All three problems
(WRP, AGP, TSP) are known to be NP-hard, thus approximate algorithms are considered
to find solutions in a reasonable time. The cooperation of several robots is formulated as
the multi-robot variant of the WRP, resp. the TSP, with the MinMax criterion.

A new sensor placement algorithm, called the Boundary Placement is proposed to find
a set of sensing locations with restricted visibility range. The algorithm is compared with
approaches based on convex polygon partitioning and the randomized dual sampling
schema. The proposed algorithm outperforms both algorithms in the number of found
locations and also in the required length of the inspection path.

The Self-Organizing Map (SOM) for the TSP is considered in a polygonal domain
W in order to solve the multi-goal path planning problem. The SOM adaptation proce-
dure modifies weights of neurons according to city presented to the neural network. The
weights represent nodes that are organized into a ring of nodes and the ring represents
a solution of the TSP. Computations of node–city paths and distances are supported by
three approaches: an approximation of the geodesic path based on the convex partition of
W , navigation functions, and a triangular mesh ofW . The proposed algorithm is compu-
tationally feasible and it provides competitive results to the GENIUS heuristic.

The SOM based algorithm with navigation functions is applied to the generalized
multi-goal path planning problem where a goal can be represented by a set of points
instead of a single point. The proposed algorithms are demonstrated in the inspection
planning with segment sensing locations, and in the problem of cooperative visits of con-
vex areas of interest.

A new adaptation procedure is proposed to solve the WRP with restricted visibility
range in a polygonal domain W . The computation of continuous sensing is supported
by a triangular mesh of W and a convex cover of W . The procedure is also used to find
solutions of the MWRP variants: independent patrolling routes, and closed routes starting
from a common depot.

The problem of the multi-goal path planning with respect to kinematic and kinody-
namic constraints is considered as a trajectory generation based on the found path. More-
over a new motion planner called RRT–Pathext is proposed. The planner is able to find a
solution of the multi-goal motion planning problem and it is used to regenerate a ring of
nodes in the SOM based algorithm for the WRP. A solution of the WRP is found as an in-
spection trajectory for one or several mobile robots satisfying kinematic and kinodynamic
constraints.





“Any sufficiently advanced technology is in-
distinguishable from magic.”

Arthur C. Clarke
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Glossary
Robot is a collection of bodies capable of generating their own motions.

Workspace,W , is a subset of 2D physical space:W ⊂ R2 in this thesis.

Configuration is any mathematical specification of the position and orientation of every
body composing a robot, relative to a fixed coordinate system.

Configuration Space, C-Space or just C, is a set of all configurations of a robot. For a rigid
robot A ⊂ W and an obstacle region O ⊂ W expressed by polygonal models the obstacle
region Cobs ⊂ C is Cobs = {q ∈ C|A(q)∩O 6= ∅} and free space is denoted as Cfree = C \ Cobs.
Polygonal Path is a continuous map of an interval from a point s to point t consisting of
a finite number of line segments (edges) joining a sequence of points.

Path is a continuous map τ : [0, 1]− > Cfree. In this thesis, a path is always polygonal path
and even in a case it is found as continuous smooth function, it is always discretized into
finite number of line segments.

Trajectory is a path parametrized by time, and velocities and accelerations can be com-
puted by taking the first and second derivatives with respect to time.

Simple polygon P , having n vertices, is a closed, simply-connected region whose bound-
ary is a union of n (straight) line segments (edges), whose endpoints are the vertices of P .

Polygonal domain P , having n vertices and h holes, is a closed, multiply connected re-
gion, whose boundary is a union of n lines segments, forming h + 1 closed (polygonal)
cycles.

Obstacle is any region of the space whose interior is forbidden to paths.

Free space is complement of the set of obstacles. If the free space is a polygonal domain
P , the obstacles are the h + 1 connected components (h holes and the face at infinity) of
the complement of P .

Map is a model of robot surrounding environment, a polygonal domain representing free
space is used to model the environment in this thesis.

Feasible path is a path such that all point of the path are reachable by the robot from its
first point.

Shortest path is a path of minimum length among all paths that are feasible, satisfying all
imposed constraints.

Geodesic path is the shortest path among obstacles.

Diagonal is a line segment connected two polygon nonadjacent vertices and contained in
the polygon, an edge connects adjacent vertices.

Visibility - Two points p and q in a polygon P are called visible if the line segment joining
them is contained in P .

d-Visibility - Two points in a polygon P are called d-visible, if they are visible and the
length of the line segment joining them is less or equal to d.

Internal angle - A vertex of simple polygon P defines two angles a non-internal angle
and an internal angle. The angle that intersects P is called internal angle.

Reflex vertex - A vertex v of polygon P is a reflex vertex, if its internal angle is strictly
greater than π. Otherwise the vertex is called convex vertex.
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Steiner point - A point is called Steiner point if it is an extra vertex that is not a member of
the input.

Monotone polygon is a polygon for which any line parallel to some fixed direction inter-
sects the polygon in a single connected piece.

Convex polygon - A polygon P is called convex if the line segment joining any two points
of P lies within P .

Star shaped polygon - A polygon P is called star shaped if there is a point q ∈ P such that
all points of P are visible from q.

Polygon cover is a collection of sub-polygons whose union is exactly the input polygon.

Polygon partition is a collection of sub-polygons within pairwise disjoint interiors whose
union is exactly the input polygon.

Guard is a point that is source of visibility or illumination.

Sensing location is a guard with realistic physical visibility constraints.

Point visibility polygon is the region visible from a point in a polygon P .

Segment visibility polygon is the region visible from a segment in a polygon P .

Ray-shooting query is a query asking which object is first hit by a ray oriented in a given
direction from a given point.

Path planning problem: Compute a free or semi-free path between two input configura-
tions.

Motion planning problem: Find a feasible trajectory from a initial position (configura-
tion) to the given destination.

Touring polygons problem: Find a shortest path/cycle that visits in the given order at
least one point of each polygon in a sequence (P1, P2, . . . , Pk).

Monotone polygonal path - A path is called monotone if there exist a direction vector d
such that every directed edge of the path has a non-negative inner product with d.

Monotone path problem: Find a shortest monotone path (if any) from s to t in a polygonal
domain P .

Sailor’s problem: Compute a minimum-cost path, where the cost of motion is direction-
dependent, and there is a cost L per turn (in a polygonal path).

Watchman Route Problem (WRP): Find a shortest cycle (path) within a polygonal domain
P such that every point of P is visible from some point of the cycle.

Lawnmowing problem: Find a shortest cycle (path) for the center of a disk such that every
point of a given region is covered by the disk at some points along the cycle (path). The
problem is closely related to the WRP with restricted visibility (d-sweeper).

Zookeeper’s problem: Find a shortest cycle in a simple polygon P (the zoo) through a
given vertex v such that the cycle visits every one of a set of k disjoint convex polygons
(cages), each sharing an edge with P .

Safari route problem: Find a shortest tour visiting a set of convex polygonal cages at-
tached to the inside wall of a simple polygon P .

Traveling Salesman Problem (TSP): Find a shortest cycle that visits every point of a set
S of n points.

City is a point to be visited in the TSP, it can be found as guard or as sensing locations.
The city is one of the goal in the multi-goal path planning formulated as the TSP.
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Chapter 1

Introduction

Navigation is the fundamental problem of mobile robotics. It can be defined as a set of
techniques that provide abilities to safely move a mobile robot to a desired location. The
behaviour of the mobile robot acting in an environment can be called intelligent, if the
robot respects the environment while it is navigated towards the goal and selected crite-
rion of optimality is considered. Such desired capabilities of the intelligent mobile robot
can be accomplished by a reasoning about the environment and actions to be performed.
The reasoning capabilities are represented as the cognition planning module in the gen-
eral architecture of the intelligent mobile robot shown in Figure 1.1.

The multi-goal path planning is one of the cognitive activity that aims to provide a path
for a robot such that the robot visits given set of places (goals) while a selected criterion is
optimized, e.g. the path is the shortest one. The set of goals can be given by a human op-
erator, or can be found automatically as a part of the planning process to fulfill the given
task. If several robots can participate on the task, two additional aspects can be consid-
ered: cooperation and coordination. The cooperation deals with efficient distribution of
goals among participating robots, while the coordination deals with efficient sharing of
common resources. The common resource is the workspace of mobile robots in the path
planning problem, thus the coordination avoids possible collisions between robots.

Regarding the architecture of the intelligent robot, Figure 1.1, the planning is related to
the model of the environment and to the plan (path) execution module. An environment
representation can affect suitability of a particular planning algorithm. The plan execution
module relates to particular robot parameters and it can define motion constraints that
should be respected in the path planning. These relations have to be considered in the
particular planning algorithm, because possible real application of such an algorithm on
mobile robots is highly dependent on capabilities to create a suitable world model and
feasibility of the planned path.

The related modules should be considered in the context of particular task, which have
to be solved by mobile robots, thus the problem motivation of this thesis is presented in
the next section.

1.1 Problem motivation

The main motivation for the studied multi-goal path planning problem is a search and
rescue mission in an office like environments for a team of robotic and human entities.

1



1.2. INSPECTION TASK

Environment

Environment Model

Real World

processing
Data

Perception

Knowledge

Cognition
Planning

Plan

ActingSensing

Execution

Figure 1.1: Schema of cognitive robot.

A request for a practical solution of the problem comes from the IST-2001 FET project
number 38872 - PeLoTe - Building Presence through Localization for Hybrid Telematic
Systems, which deals with cooperation of human and robotic entities in a search and
rescue scenario [160]. The planning of cooperative motion is one of the key components
of the whole system. The problem is an efficient searching in a priori known environment,
where changes of the environment can occur. Despite the fact that an environment can
be changed after a disaster or even it can be changed during the mission a preliminary
planned paths are used at the mission start and they serve as guidelines how to search
the environment to find possible victims as fast as possible. The time to complete the
searching is the most relevant and in the case of multi-robotic team it leads to minimize
the longest inspection tour.

In a mission scenario for an office like building a CAD model is a priori known and it
is used by the rescue team leader to plan the rescue operation. Such model can be used as
a model of the environment in a path planning algorithm to find a tour for each member
of the team. Thus, the environment is known and the problem can be formulated as the
inspection task:

Inspection Task - For a given group of mobile robots find a path for each robot such that
all interesting parts of the environment will be seen by at least one robot.

Two particular constraints are part of the task: paths must be traversable by the robot and
have to respect sensing capabilities of the robot. In addition, an algorithm for the inspec-
tion task have to provide solution in a reasonable time to be used in practical experiments
of real rescue mission.

1.2 Inspection Task

The inspection task deals with a problem to “see” all interesting parts of the environment,
thus it can be categorized into the class of visibility problems. Two types of the sensing
can be considered in the inspection task: continuous sensing and discrete sensing. The vis-
ibility problems are studied in the computational geometry, where a problem formulation

2



CHAPTER 1. INTRODUCTION

of the inspection task for the particular model of sensing can be found. The continuous
sensing is motivated by problems where the cost of the sensing is relatively cheap in com-
parison to the cost of the motion. Contrary to the discrete sensing model, where the cost
of the sensing is dominant and the cost of the motion can be ignored. The inspection task
with the continuous sensing can be formulated as the Watchman Route Problem (WRP).

Watchman Route Problem - Find the shortest cycle (path) within a polygonal domain
P such that every point of P is visible from some point of the cycle [109].

The higher sensing cost can be caused by limited computational power carried on a robot,
which does not allow continuous data processing, or measurement cannot be performed
during the robot motion, because it requires a significant amount of time and vibrations
can decrease quality of measurements. The discrete sensing leads to the decoupled ap-
proach to solve the inspection task. At first, a set (possibly minimal) of sensing locations
is found such that the environment will be inspected by performing measurement at these
locations. After that, a path to visit the found set is determined. The problem to find a set
of sensing locations can be formulated as the Art Gallery Problem (AGP).

Art Gallery Problem - Find a minimal number of guards (sensing locations) within a
polygonal domain P such that every point of P is visible from some guard.

The problem of path planning to visit sensing locations is an instance of the multi-goal
path planning problem, which satisfy mission objective of the inspection task. The multi-
goal path planning problem can be formulated as the well know Traveling Salesman Prob-
lem (TSP).

Traveling Salesman Problem - Given a set of cities (goals) and distances between them,
determine the shortest path starting from a given city, passing through all the other cities
and returning to the first city.

The route is closed in the TSP, which is not a drawback in the inspection task, because a
rescuer typically enters to a building at the emergency exit, which is also used to leave the
building.

The combination of the both costs is a difficult problem and it remains largely unex-
plored [107]. The decoupled approach has been successfully applied for the inspection
planning in [69], therefore it is preferred in order to fulfill the problem motivation. The
inspection task can be solved in four steps:

1. solve the AGP for the given environment to obtain a set of sensing location,
2. plan paths between each sensing locations,
3. solve the TSP to get a plan how to visit sensing locations,
4. use the planned path to guide the navigation of robot in the environment.

Both problems: the AGP and the TSP, are known to be NP-hard, therefore only approx-
imate solution can be expected rather than optimal in a reasonable computational time.
Moreover particular constraints related to the robotics have to be considered in the AGP
and the TSP, which are not directly addressed by the common problem formulations.
Sensing locations have to be reachable by the used mobile robots, also it is clear that paths
between sensing locations have to be collision free and have to be traversable by the par-
ticular mobile robot.

The TSP formulation requires costs between cities. The cost is related to a path be-
tween cities, it can be the length of the path, or time to traverse the path. To determine
required time to traverse the path a trajectory have to be generated. In such case, the
optimal control of the robot movements along the trajectory can play an important role
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in minimization of the required time and the problem becomes relevant to the control-
theory. It is worth to mention that approaches from the control-theory tend to apply to
systems with particular structure and no obstacles [52]. An optimization of a feasible path
such that optimized path satisfies all constraints and its quality is improved is called tra-
jectory optimization. The trajectory optimization problem is considered complementary
to motion planning, because it usually requires an initial guess [176]. Therefore the thesis
is concerned to path planning and length of the path is used as an estimation of the travel
cost.

From the perspective discussed in the previous paragraphs, the inspection task can be
decomposed into sequence of relatively independent problems, see Figure 1.2. At first, a

Determination

Path Following

robot control

Route Planning

sensing locations

path (route)

Sensing Locations

Figure 1.2: Decomposition of the inspection task.

set of sensing locations is determined as a solution of the AGP with respect to model of the
robot and its sensing capabilities. The found set represents cities in the TSP, in which cities
are connected by paths found by some path/motion planning technique with respect to
the robot motion capabilities. A solution of the TSP is used to construct an inspection path,
which is than followed by the navigation module of the robot.

1.2.1 A Group of Cooperating Mobile Robots

The above presented discussion of the inspection task considers only one mobile robot.
The presented problems can be formulated for the multi-robot variants as the Multiple
Watchmen Route Problem (MWRP) and the Multiple Traveling Salesmen Problem (MTSP). In
both problems, two criterions can be considered:

• MinSum - minimization of the total length of the routes,
• MinMax - minimization of the longest route.

The MinMax variant is more appropriate for the inspection task in the context of search
and rescue scenario, because the time to find possible victims is critical. If the total amount
of spent energy have to be considered, the MinSum variant should also be taken into
account.

The cooperative behaviour of mobile robots is considered by the MinMax criterion,
which leads to assignment of the sensing locations to each robot. The coordination re-
solves problem of mutual robot avoidance and it can be efficiently solved if positions of
the robots in time are known. The multi-robot planning with consideration of cooperation
and coordination can be computationally unfeasible [176], therefore a decoupled planning
can be applied. It means that collision free paths are found independently for each robot
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according to optimization criterion. After that, velocity profiles for each robot are found
to avoid possible collisions between robots. Alternatively if found paths do not intersect
each other, the coordination is guaranteed instantly from the found paths.

1.2.2 Remark about Research Direction

The studied problem of the multi-goal path planning for a cooperating group of mobile
robots in the context of the inspection task formulated as standard problems the AGP
and the MTSP, or as the MWRP, is advantageous in several aspects. These problems are
studied for a long time and several algorithms have been already proposed. For particular
restricted problem variants, optimal solutions have been proved or class of approximation
with the worst case or expected complexity have been proposed. The formal problem def-
inition allows selection of an already available algorithm for the particular sub-problem.

On the other hand, the wide range of approaches is also challenging, because solutions
for restricted class of sub-problems require careful consideration. The presented problem
formulations are known to be NP-hard in general, therefore an extension of particular ap-
proach to solve more general problem can be too complex or not applicable at all. More-
over the robotic application of the inspection task have to be considered with high atten-
tion, because capabilities of real robots add particular constraints that are not considered
by the computational geometry community (origin of the AGP and the WRP). Similarly
the TSP is an optimization problem that uses a cost between cities. The cost is a path
between two places in the environment, and the path have to be determined. Idealized
algorithms for path planning must be augmented to deal with many annoying realities
when applied in the field: motion constraints, complex definition of the goal, optimiza-
tion criteria or side conditions and, as always, uncertainty [75]. Also from a practical point
of view algorithms robustness should be considered. This is especially important for al-
gorithms from the computational geometry, because even an optimal algorithm has been
proposed and proved it can deal with robustness problems or the algorithm is not easy to
implement [211].

To select appropriate approaches and to formulate and specify particular assumptions
of the studied problem of multi-goal path planning in the context of the inspection task it
is necessary to review not only the robotic domain, but also the computational geometry
and the operation research domains. The real applicability of proposed solution of the co-
operative inspection task strengthen the research direction to more practical approaches,
thus it is not necessary to find the exact solution, which can be computationally expensive
due to NP hardness of the problems.

1.3 Preview of the Thesis Contributions

The thesis follows the decoupled approach of the problem and provides particular con-
tributions to decomposed sub-problems. In addition, the WRP and MWRP formulations
are also considered. Particular contributions, and in same cases with already published
papers, are as follows.

• Comparison of sensing locations algorithms and proposition of a new algorithm
called Boundary Placement, Chapter 4. The preliminary results have been published
in [85].
• Multi-goal path planning problem - TSP and MTSP-MinMax problem formulations:
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– comparison of soft-computing techniques [159, 156],
– a new algorithm for the MTSP with a hierarchy of cities [88],
– an extension of the self-organizing map (SOM) algorithm for the MTSP-MinMax

to a polygonal domain, Chapter 5.

• Generalized multi-goal path planning problem for goals with a polygonal shape,
Chapter 6:

– a solution of the inspection task with segment sensing locations,
– an application of the navigation functions in the SOM adaptation procedure,
– an inspection planning for polygonal areas of interest.

• An algorithm for the WRP and the MWRP-MinMax with restricted visibility range
in a polygonal domain, Chapter 7.
• Consideration of trajectory generation in the multi-goal path planning, Chapter 8:

– consideration of acceleration limits [86],
– comparison of RRT motion planners [264],
– a new algorithm for the multi-goal motion planning problem called RRT–Pathext,
– an algorithm for the MWRP with trajectory generation.

• An algorithm for the cooperative inspection task in a search and rescue mission [161].

1.4 Thesis outline

The structure of the thesis follows decomposition of the inspection task. The studied prob-
lem is related to several domains, which are studied for several decades thus only a brief
description of the most related and inspiring approaches are presented in Chapter 2. The
overview of related work leads to more specific problem formulation and thesis goals pre-
sented in Chapter 3. Chapter 4 is dedicated to solution of the AGP part of the inspection
task, which is considered as the sensor placement problem. New proposed algorithm is
compared with existing algorithms in several instances of the inspection task. In Chap-
ter 5, the TSP and the MTSP are studied with focus to the Self-Organizing Map (SOM)
approach to solve the MTSP-MinMax as the most promising soft-computing technique to
solve various inspection task variants. The first part of the chapter is dedicated to the de-
scription of the selected SOM approach that is then extented to a polygonal domain. The
proposed MTSP algorithm is applied for generalized goals in Chapter 6. New proposed
algorithm for the inspection task with restricted visibility range formulated as the WR-
P/MWRP is presented in Chapter 7. Trajectory generation in the multi-goal path planning
is discussed in Chapter 8, in which a new motion planning algorithm for the multi-goal
motion planning is introduced. The algorithm is then used in the proposed WRP algo-
rithm to deal with motion constraints and to plan inspection trajectories instead of paths.
Finally conclusion and remarks about future work are presented in Chapter 9.
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Chapter 2

Related Work

The studied multi-goal path planning is tightly related to path and motion planning ap-
proaches, because they provide paths between two goals. The multi-goal problem arises
in a robotic task, which aims to fulfill desired mission objective by visits of (eventually
given) goals. It is the reason why an overview of robotic tasks is also part of the litera-
ture review. The multi-goal path planning can be formulated as the TSP, therefore it is
related to routing problems. In addition, the inspection task is related to the WRP and
the AGP studied in the computational geometry. Therefore these domains are also in-
cluded in the presented overview of related work. The review follows the organization
into robotic tasks, visibility problems, and routing problems. The domains overlap in the
mobile robotics, thus the division is not strict, especially for the computational geometry
approaches applied in motion planning.

At this moment, it should be noted that path planning is sometimes called motion
planning (and vice versa) in literature. These two problems are tightly connected, but a
difference can also be found. The motion planning can be considered as a problem to find
a trajectory, thus it also find a path. The reverse is not so straightforward, due to necessity
to find a velocity profile along the found path, which can be non-trivial. Motion planning
is therefore considered in the overview rather than “pure” path planning.

The chapter is organized as follows. Brief overview of environment representations is
presented in the next section. Mobile robot navigation tasks are discussed together with
review of the path and motion planning approaches in Section 2.2. An overview of the art
gallery and watchmen route problems is presented in Section 2.3. Section 2.4 is dedicated
to routing problems. A conclusion leading to research directions, problem specification,
and thesis goals is presented in Section 2.5.

2.1 Environment Representation

A model of robot surrounding environment is called a map and it can be represented in
various forms. The navigation task operates over the free space of the environment and
representation of the occupied portion of the environment is necessary to recognize re-
gions or locations in the environment. Methods to solve the path planning problem are
designed to work efficiently with specific type of environment representation. In [75],
three classes of environment representations are discussed: spatial decomposition, geometric
representation and topological representation, which are briefly described in the next para-
graphs.
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Spatial Decomposition - The idea of the spatial decomposition is to represent space
itself rather than to represent individual objects within it. The spatial decomposition is a
direct sampling of the environment into two or more dimensions. Two dimensional grids
are called the occupancy grids. The main advantage of this representation is its generality,
the grids can represent anything. Grids are commonly used for data fusion in the mapping
task, because they allow straightforward data fusion that deals with uncertainty e.g. the
Bayesian approach [254], Dempster-Shafer Belief Accumulation [129], statistical decision
theory [144] and histogram grids [34]. The only disadvantage is a high space complexity,
therefore only limited regions can be represented by grids. An alternative representations
based on cells are recursive hierarchical structures, e.g. quadtree or octree in the case of
three dimensions. Hierarchical representations are suitable for environments where most
of space is free or occupied, because the worst case is complete subdivision into smallest
cells. A survey of hierarchical data structures can be found in [227]. From the path plan-
ning point of view the spatial representation is suitable for search-based techniques [272].

Geometric representation uses geometric primitives such as points, lines, curves and
volumes. A two dimensional map of the closed environment is commonly represented
as a polygonal domain where border polygon is used to bound the environment and
obstacles are represented by holes. Polygonal representation is typically assumed in com-
putational geometry, in approaches to solve the AGP, the WRP and related problems.
From the mobile robotics point of view, grid based approaches are currently dominant
in exploration and mapping tasks. Mainly because occupancy grid is able to deal with
uncertainty, however it is computationally infeasible for large scale environments. Ge-
ometric models are use for path planning and for simple environments models can be
robustly constructed from the grid by computer vision techniques [70]. A polygonal map
can be created from a CAD model in an automatic or a semi-automatic way, because these
models do not contain noisy data and processing is straightforward. Recent results in the
geometric mapping are promising and provide polygonal maps from grids [23] or set of
points [164, 170]. In [125], a vector representation of explored part of environment called
sketch map has been used in the multi-robot mapping scenario. An overview of geometric
mapping approaches can be found in [258].

Topological representation describes geometric relationships between the observed
features rather than their absolute positions [112, 180]. The resulting representation takes
a form of graph where nodes represent the observed features and edges represent the
relationships between the features. The topological maps can be built and maintained
without any estimates of robot position. It allows integration of large area maps without
suffering from accumulated odometry errors, since all connections between nodes are rel-
ative, rather than absolute. A combination of topological representation with local metric
maps is used to represent large scale outdoor environments [35]. The graph representation
is very efficient for path planning approaches based on graph-search techniques.

2.2 Path Planning and Mobile Robot Navigation Tasks

The mobile robot navigation is part of all robotic tasks like exploration, inspection, cov-
erage, or pursuit-evasion as it provides ability to move a robot towards a desired goal.
The navigation consists of a set of techniques that provides localization of the robot, path
planning, environment modeling and interpretation of the model. In addition, algorithms
to control the robot movements are necessary to act in the environment. From this point
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of view a mobile robot navigation is a complex problem, which is solved by several tech-
niques from various domains. The essential capability of the mobile robot is its movement
and to move a robot in a desired fashion the path planning problem is fundamental.

The general path planning problem is to find a collision free path from a given start
position to a desired goal position in the environment. A path can be found for various
criterions e.g. maximal clearance, allowable turning radius, travel cost. The most common
approaches try to find the shortest path. Path planning algorithms are developed accord-
ing to different theoretical assumptions and requirements concerning the following [75]:

• Environment and robot - the structure of the environment, the robot capabilities and
shape.
• Soundness - is the planned trajectory guaranteed to be collision free?
• Completeness - do the algorithms guarantee to find a path, if one exist?
• Optimality - the cost of the actual path obtained versus the optimal path.
• Space or time complexity - the storage space or computer time taken to find a solution.

Path planning algorithms are used in particular navigation task, which can be divided
according to a priori known information about the working environment. The exploration
task is focused to create a map of the environment, while the inspection task deals with
efficient planning of a path to “see” the environment. The coverage task can be viewed as
a special case of the inspection task, where sensing range is limited to the size of robot,
which is navigated to visit each point of the environment. However all these tasks can
be constrained for static or dynamic obstacles, the moving objects are typical for pursuit-
evasion problems.

2.2.1 Motion Planning

In every task mention in the previous paragraph some kind of path or motion planning is
necessary as well as an algorithm to follow the found path. The studied multi-goal path
planning problem for group of cooperating robots is more part of the Artificial Intelli-
gence domain unlike the path following problem, which is more related to robot control.
The general formulation of the motion planning problem is known as the Piano Mover’s
Problem and it is known to be PSPACE hard even in case of one robot [220]. The problem
is to find a continuous path for a given starting and goal positions of rigid robot modeled
as polyhedron inside the Euclidean space such that the path avoids polyhedral obstacles,
or report that such path does not exist.

One of the most straightforward motion planning methods is consideration of the
shortest path from one position to desired one. The method was used to navigate early
mobile robot SHAKEY [201]. For a polygonal environment the shortest path is found in
the visibility graph by Dijkstra’s algorithm. For simplicity a point robot can be directly
assumed, but it can be unrealistic consideration. To guarantee the path is obstacle free for
a non-point robot, obstacles can be expanded by particular distance in certain direction.
An approach based on expansion of obstacles by a radius of the disk robot has been pro-
posed in [184] and it was one of the first steps to formulate the notion of the configuration
space [176]. For simplicity assume two dimensional environment, a world W = R2, ob-
stacles O ⊂ W and rigid body of robot A ⊂ W . The configuration space C is a set of all
possible configuration of the robotA. A configuration q, q ∈ C can be for example triple of
parameters q = (x, y, ϕ), where x and y denote position of the robot and ϕ its orientation.
The obstacle region Cobs can be defined as Cobs = {q|q ∈ C ∧A(q) ∩O 6= ∅}. The free space
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is Cfree = C \ Cobs. Cfree is considered to be open, however to solve some optimization
problems (like the shortest path) the closure c l(Cfree) is used.

The shortest path approach can be called the shortest-path roadmap and it is one of the
combinatorial approach in which a solution is found in a graph called roadmap. A roadmap
can be found by cell decomposition, e.g. trapezoidal decomposition or triangular decomposi-
tion. The Voronoi Diagram can be used [31] to guarantee maximal clearance along a path.
To deal with segments and not just points a generalization of standard Voronoi diagram
(GVD) is more appropriate. The GVD can contain unnecessary information that is why
hierarchical GVD has been introduced in [265]. A combination of the visibility graph and
Voronoi Diagram called Visibility-Voronoi Complex [267] is suitable if an allowable clear-
ance is given. The unifying concept of diagrams is called Abstract Voronoi Diagrams [152].

The above roadmap methods are suitable for a polygonal representation of environ-
ment, but they can also be applied to a grid. To find a path, e.g. the shortest one, any search
based technique can be used, the most general are the A? algorithm or Stentz’s D? vari-
ant. For a cell based representation the Distance Transform algorithm, introduced in 1966
by Rosenfeld and Pfaltz, can be used. It is propagation algorithm based on wavefronts in-
creasing distance. In 1984, Jarvis adopted this algorithm for planning a collision-free path
by starting propagation of the wavefront from the goal points to fill all of the free space,
flowing around obstacles [133]. The main advantage of the algorithm is its simplicity and
flexibility to deal with uncertainty or unknown prior information about the environment.
The algorithm has been used for a variant of the pursuit-evasion task called covert robotic
navigation, where it is combined with visibility computation in the so-called Dark Path
algorithm [188]. Like other grid based technique, it is computational intensive, however
this issue can be addressed by a hardware implementation on the FPGA [246].

The Distance Transform algorithm is kind of wave-front path planner [52]. Such a plan-
ner is also the numerical potential field technique [27]. A potential function is a differen-
tiable real-valued function g from Rm → R and its gradient ∇g(q) points in the direction
of increasing g. This function is used to provide a direction for robot movements and can
be viewed as a vector field with attractive and repulsive forces. Desired goal attracts a
robot while obstacles act as repulsive forces to avoid robot collision. The navigation of the
robot is following negated gradient of the potential function q̇(t) = −∇g(q(t)) and the
robot stops when it reaches the goal ∇g(q) = 0 [52]. If the function ∇g(q) has only one
global extreme it provides suitable navigation function. However early approaches can
trap a robot into local extreme, a harmonic potential function resolves this issue [58]. The
harmonic function is a function that satisfies Laplace’s equation ∇2g(q) = 0. The solu-
tion of the equation can be found numerically by the finite difference method or the finite
element method [57]. Combination of potential field functions with the roadmap based
approaches can be found in literature. A combination of Voronoi diagram with locally
used potential field method is proposed in [189].

Roadmap based approaches become impractical if dimension of Cfree increases, mainly
because they rely on explicit geometric representation of Cfree [52]. Based on an obser-
vation that a test if q is q ∈ Cfree is relatively fast randomized approaches were pro-
posed. Two main approaches are Probabilistic Roadmap Planner (PRM) introduced in [146]
and Rapidly-Exploring Random Trees (RRT) introduced in 1998 by LaValle. The PRM is two
phase algorithm: the first phase is called a learning phase and the second a query phase.
In the first phase, a roadmap is created from random samples. The samples from the free
space, q ∈ Cfree, represent nodes of a graph. An edge between two nodes represents a path
between nodes, the path is found by a local planner, e.g. straight lines that are entirely in
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Cfree. The query phase finds a path for arbitrary start and goal configurations in the cre-
ated graph from the first phase. The PRM based methods have been successfully applied
for high-dimensional spaces providing high-quality paths [104]. A supporting corridor is
utilized in the recent Corridor Map Method [105] to reduce required computational time.

The quality of path relates to its smoothness. A robot can follow only suitable path,
which respects its kinematic and dynamic constraints. Such a path can be called a trajec-
tory that can be directly used by robot motion controller. The term trajectory is denoted to
a path parametrized by time and velocities, and accelerations can be computed from the
first and the second derivatives with respect to time [52]. It should be noted that smooth
shortest path can be composed from motion primitives, called Dubin’s curves, even in
case of obstacles [131].

Rapidly Exploring Random Trees

The RRT is a single-query planning algorithm that produces trajectories directly. It starts
from an initial configuration qinit ∈ Cfree and extents a tree of configurations towards
the desired configuration qgoal. The tree represents configurations that are reachable from
qinit. The RRT is probabilistically complete and it was developed for kinodynamic plan-
ning [178]. Besides, it has been successfully applied in other path planning problems [177].
Consideration of kinodynamic constraints (velocity and acceleration bounds) increases
planning difficulty with dimension of C and problem constraints. The RRT provides a fea-
sible trajectory, which is not typically optimal, but it can be locally improved.

The fast exploration of the RRT is based on the so-called Voronoi bias. If Voronoi dia-
gram of the current expanded tree (diagram of the tree nodes) is created, then a new ran-
dom sample will likely be in the largest region, hence the tree is more probably expanded
in that direction. Many algorithm variants have been proposed during last years. They in-
crease performance and address the main issue of the probabilistic planning methods: the
narrow passage problem. Selected approaches are briefly described in the next paragraphs.

Exploration capability in the narrow passage problem is increased by several local trees
in [245]. A new tree is started from the current random state if a tree vertex cannot be ex-
panded towards the new state. The tree is expanded in parallel with the main tree and
other trees to the goal. In [218], a combination of the RRT and cell-decomposition is pro-
posed to addressed the problem.

The quality of a found path is discussed in [256]. A heuristic is proposed to select
an expanding node that will provide path with lower costs. Instead of the closest node
to the new random state, several nodes are considered (by the k-nearest neighbourhood
function) and the best potential node is selected.

The sampling strategy based on visibility region of the tree node is used to dynamical
adaptation of sampling domain in [280, 132]. A node with high number of fails of expan-
sion attempts is considered to be close to obstacle and its sampling domain is decreased.
Similar technique to local search tree is used in the RRT–blossom algorithm [142], which
uses a local flood fill mechanism based on instantiation of all possible node expansions.

Ferguson and Stentz proposed re-usage of previously found tree to decrease required
computational time and to increase quality of found paths in [92]. The node selection
process is based on combination of distance to the goal and cost from the start to the
node. Selected promising nodes from the previously found tree are considered in the new
tree, while the cost from the start to the node is increased and weight of the distance to the
goal is reduced by given values. The proposed technique leads to prefer costly solution
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in the first tree to find a feasible path, which is then possibly refined to be cheaper. A
RRT based algorithm is used for real-time path planning for the RoboCup soccer in [38].
The authors proposed a cache mechanism to store found paths that are used in the next
planning iteration, because the environment is not significantly changed. The achieved
movements was about 0.8 ms−1 and 1.7 ms−1 if the found path has been post-processed.

The required computational time of RRT algorithms is related to the computational
efficiency of determination of the closest configuration from the tree to a newly sampled
configuration. The speed of the search can be dramatically increased by an appropriate
spatial structure, like the KD-tree for the Euclidean spaces. Extensions of the KD-tree
structure suitable for topological spaces in the motion planning problems are proposed
in [279]. The extension is available as an open-source library called the MPNN [278],
which is based on the ANN library for the Euclidean spaces proposed by Aray and
Mount [198].

The RRT based path planners have been successfully used in various robotic tasks. For
example it has been used for path planning with uncertainty in the Particle RRT [191] or
RRT-SLAM for the exploration task [128]. Successful motion planning for a car vehicle
in DARPA Urban Challenge is reported in [162]. An application of the RRT based path
planning for the multi-robot cooperative box-pushing is presented in [209].

For ability of the RRT algorithm to deal with various constraints and assumptions it is
considered to be one of the most promising recent motion planning approaches.

Multi-Robot Planning

To plan a collision free path for several mobile robots two types of collisions have to
be considered: robot–obstacle and robot–robot. A motion planner for a robot consisting
of multiple bodies can be used to solve the multi-robot case [176], e.g. the RRT or the
Sampling Based Roadmaps Trees (SRT) [52]. The dimension of the problem grows linearly
with the number of robots, hence the complete algorithms require at least exponential
time, see problem formulation in Section 7.2 [176]. Two approaches for the multiple robot
problem are defined in [52]:

1. centralized planning - considers different robots as one multi-robot body,
2. decoupled planning - is two stage algorithm. At first collision free paths are found

independently, after that the coordination is achieved by computing the relative ve-
locities of robots along their individual paths.

An advantage of the decoupled method is that it does not increase dimensionality of the
configuration space. On the other hand, it is incomplete, because even in the case both
parts are complete, it may be impossible to find a collision free plan for two paths found
in the first stage.

LaValle discussed other reason to separated study of multi-robot planning problem
in [176]. If an optimality is important and performance of each robot is optimized, there is
no clear way how to combine several objectives into a single optimization problem with-
out losing some critical information. The Pareto optimality is proposed as the appropriate
notion of optimality planning for the multi-robot motion planning.

2.2.2 Coverage, Inspection, Pursuit-Evasion and Related Tasks

The main problem motivation of this thesis is the cooperative inspection task in a search
and rescue mission. Beside the motivation, the general multi-goal path planning for co-

12



CHAPTER 2. RELATED WORK

operating robots is also related to other robotic tasks. An overview of several related
approaches for robotic tasks is presented in this section, partially as overview of possi-
ble applicable approaches and partially as possible problems for further applications of
eventually new proposed solutions.

Four main tasks are studied in the field of mobile robotics: exploration, coverage,
inspection and pursuit-evasion. These tasks can be divided according to possible com-
munication between robots into two types of planning categories: centralized and dis-
tributed [75]. Distributed systems are necessary for systems where communication is in-
complete, which seems be natural choice for real robots systems. Multi-robot systems are
described from distributed artificial intelligence point of view in [190] and a survey of dis-
tributed robotic systems with focus to basic robotic tasks are presented in [212, 18]. Both
categories of planning are applicable in the motivation task, however the centralized ap-
proach is more appropriate, as the communication between members of the rescue team
with the chief is mandatory, therefore the communication is not the main issue of the
studied path planning problem.

The exploration task represents problems with a priori unknown environment. In this
thesis, an environment is assumed to be known and even in the case an environment is
changed during the search and rescue mission, it is still partially known. Newly gained
knowledge about the environment in a form of map can be used for an update of prior
knowledge and used for re-planning like in the case of known environment. The explo-
ration task deals mainly with SLAM techniques, which are not part of this thesis, there-
fore these approaches are not explicitly studied. An overview of approaches can be found
in [84]. The reset of this section is concerned to coverage, inspection and pursuit-evasion.

Coverage Tasks

One of the main ideas behind coverage path planning is an environment decomposition
into a set of cells. Several decomposition methods have been proposed: the trapezoidal
decomposition [173], the boustrophedon decomposition [51, 172], the minimal sum of
altitudes decomposition [126]. Connections of the cells are represented by an adjacency
graph, thus the planning task is formulated as the TSP. An on-line version of the coverage
algorithm is proposed in [271], which uses on-line detection of landmarks. The work-
ing environment is decomposed into a collection of non-overlapping sub-regions. While
covering a sub-region neighbouring sub-regions are detected. Detected sub-regions are
subsequently covered to perform complete coverage.

A boundary coverage can be viewed as a special coverage problem [134]. It is also
related to the exploration, where boundary (of obstacles) are used to determine known an
unknown parts of the environment. The problem for multi-robot case is formulated as the
k-Rural Postman Problem on a graph in [79]. Edges of the graph represent paths along
which the robot has to travel in order to inspect a boundary segment, or paths needed
to be traversed in order to move between disconnected inspection areas. The approach is
extended in [269] by a re-planning technique to consider changes in the size of the robot
team or the environment.

Inspection Tasks

The inspection task deals with searching an object (or more objects) in an environment.
If positions of the objects are known, the task can be formulated as the multi-goal path
planning problem. A PRM planner to find paths between goals is used in [225]. The main
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idea of the approach is to decrease the number of required paths between goals in the TSP
formulation of the problem. The proposed heuristic algorithm is based on computation
of the minimum spanning tree (MST) to estimate which paths have to be computed. The
algorithm outperforms the naı̈ve algorithm presented in [244], however in the worst case
it also computes the quadratic number of goal–goal paths. An improved variant of the
algorithm has been used in the generalized multi-goal motion planning problem where
goals are partitioned into groups [226].

The MST is also used in [186] to find 2-approx solution of the multi-depot variant of
the MTSP. Motion constraints for a car that is able to move forwards and backwards are
considered and results of Reeds and Sheep [219] are applied instead of Dubins’s curves.

In more general variant of the inspection task, an Area of Interest (AoI) can be consider
rather than a point goal. Genetic Algorithm methods to address problem of cooperative
visits of Areas of Interest (AoIs) is used in [281] and a solution of the problem with four
robots and 32 mines in the demining task is reported. The problem is formulated as the
MTSP, where areas represent vertices and an edge represents cost according to distance
between areas. The problem of visiting AoI is formulated as the task allocation problem
in [163]. Authors showed that the problem is NP-hard and proposed heuristic algorithm
called PRIM ALLOCATION and its modifications to deal with dynamic environment.
Also the problem of path planning for an Unmanned Air Vehicle (UAV) leads to the TSP
formulation if the AoI are isolated and purely visible [153].

Pursuit-Evasion Problems

The pursuit-evasion problem is similar to the inspection task in the sense of finding an
evader in the environment by several pursers. In the inspection task, the object is assumed
to be static, while the evader can move arbitrary fast and the speed of pursers is limited.
If at least one purser see the evader, searching is finished. The pursuit-evasion (or the
inspection task) can be called searching in a polygon, if the environment is represented as
a polygonal map. According to analysis of the pursuit-evasion problem two approaches
can be found in literature: the worst case analysis and probabilistic analysis [47].

Guibas at el. [113] discussed required number of pursuers H(F ), where F represents
the closure of the collision free space, and pursuers have 360◦ unlimited vision. The prob-
lem of determining minimalH(F ) for a polygonal environment is NP-hard, and an upper
bound of the minimal number of pursuers for a general space with n edges and h holes
is O(h + logn). An algorithm for one pursuer in a polygonal map and its extension for
multiple pursuers are proposed in [175]. The algorithm is based on decomposition of a
polygon into conservative cells.

An operator AH(D) angle hull for analyzing an on-line exploration strategy of an un-
known environment is developed in [121]. The angle hull of a regionD is a set of all points
in the polygon P that can see two points ofD at the right angle. The operator is used in an
algorithm for a simple unknown polygon P . The algorithm finds a tour that is less than
26.5 times long than the shortest watchman tour computed off-line.

A probabilistic approach combining the pursuit-evasion problem and the exploration
task is presented in [120]. Authors considered one or several evaders, limited precision of
sensors and a prior probabilistic map, which can be made from inaccurate information.
Two greedy pursuit policies called: local-max and global-max are proposed in [259] to
maximize probability to capture the evader. An environment is represented as occupancy
grid and the local policy considers only reachable cells, while the global policy considers
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the whole map. An approach to minimize needed time to find an object in the known
environment is proposed in [228]. The position of the object is unknown, but it is char-
acterized by the known probabilistic density function. A continuous sensing approach
is used to determine sensing locations and a sequence of visits. The approach has been
extended for several robots in [229].

The pursuit-evasion problem on a graph representation is studied in [130]. The evader
visibility is limited and can see only adjacent nodes. A polynomial algorithm for two
pursers and one evader is provided. A graph is also used in the multi-agent approach
to the path planning problem in [155]. Nodes of the graph represent certain places of
the environment and each node has associated information about movements in the time.
Edges represent admissible paths and their weights are changed to avoid collision. Several
expert rules are used to guarantee collision-free path planning.

A distributed algorithm to deploy agents with line-of-sight sensing is proposed in [102].
The algorithm is based on a graph called vertex-induced tree. An environment is repre-
sented as a simple non-convex polygon, which has to be fully guarded. Nodes of the
graph are star-shaped polygons created as visibility polygon of the polygon vertex. Two
nodes are connected by an edge if their star-shaped polygons share an edge. The deploy-
ment algorithm is local navigation algorithm, which runs asynchronously on each agent.

2.3 Art Gallery and Watchmen Routes Problems

The Art Gallery Problem (AGP) as well as the Watchmen Route Problem (WRP) belong
to the class of visibility (also called illumination) problems. The class contains several in-
teresting problems and proposed solutions related to robotic navigation tasks, especially
if a polygonal map is used to describe an environment. That is why a survey of visibility
problems is presented in this section.

The AGP was originally posed by Victor Klee in 1973 and the most basic form is [122]:
“What is the smallest number of guards needed to guard an art gallery?”. The problem is defined
on a polygonal representation of the environment and notion of visibility is necessary to
problem definition. Two points in a polygon P are called visible if the line segment joining
them is contained in P [257]. Formulation of the AGP for a polygon P is to find a mini-
mum set of pointsG (guards) in P such that every point of P is visible from some point of
G. A sufficient number of guards is bn3 c for a simple polygon, which has been proved by
Chvátal [53]. The proof is called the Art Gallery Theorem and it has been simplified by Fisk
in 1978 [93]. The idea of his proof is based on the triangulation of polygon and 3-coloring
of polygon vertices, such that each triangle has all three colors. The polygon is guarded if
all triangles are guarded, because a triangle can be guarded by one of its vertex, a color
with the fewest vertices denote the guards.

Variations of the AGP where a guard is a subset of the polygon instead of a point have
been proposed. Typical types of the subsets are polygon edges (edge guards) or convex
sets. In 1981, Toussaint started investigation of the AGP with mobile guards. The guards
were allowed to patrol individual edges of a polygon rather than standing at the same
point. O’Rouke proved that the minimal number of mobile guards necessary to guard any
polygon of n vertices is bn4 c [204]. In [235], Shermer investigated diagonal guards, which
are allowed to patrol a segment between nonadjacent vertices of polygon. The number of
required guards has been bound for several classes of polygons. Orthogonal polygons can
always be guarded by dn4 e guards and dn4 e guards are sometimes necessary. Czyzowicz
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et al. proposed that a rectangular art gallery with r rooms can be guarded by exactly d r2e
guards [67]. A rectangular gallery can be divided into rectangular rooms. If the rooms
share an edge, which represents a door between rooms, the guard can then stand in the
door between the rooms.

A polygon P with n vertices and h holes can always be guarded with dn+h
3 e point

guards [32]. A guard is called vertex guard if its position is restricted to vertices of P .
A polygon with holes can be always guarded by bn+2h

3 c vertex guards [205]. Shermer
proved that for h=1 the bound is bn+h

3 c. An exact polynomial algorithm for orthogonal
polygons has been proposed in [61]. It is based on discretization of simple polygon P and
solution of instances of discrete Set Cover problems, which is formulated as the Integer
Programming problem. This approach has been also applied for approximate solution of
the AGP for simple polygons in [62].

Liaw, Huang and Lee proposed notion of co-operative guards. A set of guards is called
co-operative if they guard whole polygon P and their visibility graphs are connected. The
problem is NP-hard for a simple polygon. A sufficient number of co-operative guards
for a simple polygon with n vertices is b3n−1

7 c [192]. The k-guarded guard is a guard that
is visible from other k guards. An orthogonal polygon with n sides can be guarded by
kbn6 c+ bn+2

6 c k-guarded guards for k ≥ 1 and n ≥ 6.

The problem of finding a minimum number of guards is NP-hard for a polygon with
holes. Furthermore, for point, vertex and edges guards the solution cannot be approxi-
mated by any polynomial time algorithm with a ratio of 1−ε

28 logn for any ε > 0 unless NP
⊆ DTIME(nO(loglogn)), where DTIME(t) is the class of all sets accepted by deterministic
Turing machines whose running time is bounded by t(n) [81].

The guarding problem is related to covering problems. Guarding a polygon by guards
chosen from some set S can be viewed as covering the polygon by visibility polygons
of members of S. Two problems are studied: the convex partitioning and the convex cov-
ering. The difference is that the partition deals with convex set of polygons with disjoint
interiors, while polygons can have joint interiors in the covering problem. Covering of
an orthogonal polygon by minimal number of rectangular polygons is NP complete even
for a polygon without holes [65]. The authors of [197] proposed a polynomial algorithm
with O(n10) for covering orthogonal polygons by star polygons. The convex partitioning
is NP-hard for polygons with holes [183].

Laurentini considered the edge-covering problem in [174]. The problem is similar to
the AGP, but instead of covering polygonal areas only edges (boundary of objects) have
to be covered. This problem is an important research area in computer vision, it is part of
the inspection problem or reconstruction of the object model. In [36], authors proposed
a restriction that each edge of the polygonal object must be observed entirely by at least
one guard. The restriction allows to find one or more sets of regions where a minimal
set of view points can be independently located. Upon this restriction the authors pro-
posed algorithm that asymptotically converges to the optimal solution of the unrestricted
problem. The algorithm is extended for 3D environments in [37].

A set of heuristics were proposed and tested in [13] for the AGP with unrestricted
visibility capabilities of guards. At first, a candidate set of guards is constructed, then
heuristic selection is applied to find smaller guarding set. An approximate solution of
visibility-independent set problem is proposed. It provides a lower bound of the required
number of guards. A visibility-independent set is a finite set, I ⊂ P , of points in the
polygon P such that visibility polygons of points p ∈ I are pairwise disjoint.
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A variant of stationary guards searching for a mobile intruder, called k-searchers, has
been introduced in [248]. These searchers can see in k directions. The ∞–searchers have
360◦ field of view. An example of 1–searcher can be a guard with a flashlight. Used visi-
bility allows “line of sight” to “gaze” a reflex vertex (or an edge) of δP as long as it does
not go outside P , where P is a polygonal region that includes its boundary δP [276]. An
O(n2) algorithm to decide whether a simple polygon with n edges can be guarded by an
1–searcher was introduced in [179]. If a polygon can be guarded, the algorithm provides
a search schedule. The 1–searchers and∞–searchers problem variants for a polygon with
holes are NP-hard [275].

More realistic sensing capabilities of guards can be considered by additional visibil-
ity constraints. Two algorithms determining minimal number of sensing locations with
consideration of restricted visibility range and incident angle are proposed in [108]. The
restricted visibility range to a distance d can be stated as follows: two points p and q in
a polygon P are called d-visible, if the line segment joining them is contained in P and
the segment length is less or equal to d. The incident angle constraint regards a situation
where a guard prefers to watch a scene directly rather than under unsuitable angle [250].
The problem is called sensor placement rather than the AGP to emphasize the visibility
constraints. Proposed approaches are based on sampling of the environment [108]. The
first algorithm uses a greedy algorithm to find a near-optimal subset of sampled points
to cover boundary decomposition with complexity O(nm2), where n is the number of
edges and m is the number of samples. The second algorithm firstly places a point p at
the boundary of the unseen part of the polygon and then selects a point with the highest
coverage from sampled points in the visibility polygon of p. The complexity of the algo-
rithm isO(mngnlog(ngn)), wherem is the number of samples in a visibility polygon, ng is
the number of found guards and n is the number of edges. The algorithm was applied to
determine a set of guards in a simple polygon for the inspection task in [69]. The inspec-
tion path was found as a solution of the TSP to visit the found set of guards, the proposed
approach has been also extented to 3D representation of environment.

Sensing with 360◦ field of view of the panoramatic camera was described in [147].
A sufficient detail of objects on a captured image limits the camera visibility range. The
proposed method decomposes a simple non-convex polygon with holes into to a set of
convex polygons. A convex polygon from the collection of convex polygons is then di-
vided into convex sub-polygons such that each sub-polygon can be guarded by one guard
with limited visibility range. The algorithm can be used for an inspection of workspace
borders and for the complete inspection of the environment. The issue of the proposed al-
gorithm is that some unnecessary guards are placed if neighbouring convex sub-polygons
have size close to the visibility range. However the found solution is only sub-optimal,
the algorithm is very fast. The required computational time increases proportionality to
the number of found guards and authors reported problem solved up to 8000 guards for
restricted visibility range.

Real surveillance multi-camera vision systems require additional visibility constraints.
In these systems, cameras are typically mounted on walls and have limited field of view
(viewing frustrum) and limited range for sufficient sharp focus in an image. The prob-
lem formulation considering these limitations is proposed in [82] and a solution based
on discretization of environment into two dimensional grid is presented in [83]. The Bi-
nary Integer Programing (BIP) formulation of the problem with similar constraints is pro-
posed in [124]. Four problems are studied, maximization of coverage for given number of
cameras of same type, maximization of coverage for several types of cameras and given

17



2.3. ART GALLERY AND WATCHMEN ROUTES PROBLEMS

total cost, maximization of coverage for given number of cameras and their possible po-
sitions, and minimization of the cost for a given required coverage. Their exact solution
is compared with a greedy heuristic and the randomized dual sampling algorithm [108].
Authors reported suitability of heuristic approaches and its well approximation of BIP
solution, however due to the lack of computational resources only small problems have
been evaluated. Similar problem has been addressed in [207]. The problem is the optimal
sensor placement to create wireless sensor network where each sensor has three parame-
ters: sensing range, field of view, and orientation. A limited bandwidth of a wireless link
is also considered. The problem is formulated as integer linear programming model and
solved by CPLEX 10.1 solver running on 3 GHz CPU. The largest solved problem has 200
placement sites and 70 control points and was solved in 30 826 seconds.

The graph theory was applied to describe properties and relations of visibility in poly-
gons. The concept of the visibility graphs was introduced by Avis and ElGind in 1983. Two
types of the visibility problems can be defined. The first type is the pure visibility prob-
lem that can be expressed by the formalism of the graph theory on point visibility graph
introduced by Shermer. The second type is the hybrid visibility problem in which other in-
formation such as geometric or conceptual properties are necessary.

Watchman Route Problems

The Watchman Route Problem (WRP) is an example of the hybrid visibility problem with
metric information. Chin and Ntafos defined the watchman route for a polygon P as a
closed walk in P such that every point of P is visible from some point of the walk [49].
They proved that the problem is NP-hard for polygons with holes and proposed an O(n)
algorithm for an orthogonal polygon.

If a visibility range is restricted to a distance d, two variants of the WRP can be found
in literature [251]. The d-watchman route problem is a variant to see only the boundary of
the polygon, while the d-sweeper route problem aims to sweep a polygonal floor using a
circular broom of radius d, so that the total travel of the broom is minimized [202].

A variant of the WRP called minimum-link watchman route is studied in [22]. The crite-
rion of the problem is to minimize the number of links of the route instead of the Euclidean
distance. Authors considered a polygon with convex holes and proved that the problem
is NP-hard and proposed a polynomial approximation algorithm.

Another variant of the WRP, motivated by the restricted visibility range, deals with
a problem to find a route inside a polygon P that visits a given collection of subsets of
P . If the collection consists of sub-polygons, two problems are studied: the safari route
problem [202], and the zoo-keeper route problem [50]. Both problems are NP-hard in general.
The collection is a disjoint set of convex polygons inside the polygon P in both problems.
Each sub-polygon shares an edge with the polygon P . The route should not enter the
interior of any sub-polygon in the zoo-keeper route problem. In the safari route problem,
an enter of the route to the sub-polygons is allowed. Chin and Ntafos proposed an O(n2)
algorithm for the zoo-keeper route problem for a simple polygon. An O(nlogn) algorithm
based on the full shortest path map is proposed for the zoo-keeper route problem with
given starting point in [30]. A polynomial algorithm O(n3) for the safari route problem in
simple polygon is presented by Tan and Hirata in [251].

The touring sequence of polygons is studied in [74]. The problem is to find a route that
visit sequence of polygons. Two bounds are proposed: an O(n2logn) bound for the safari
route problem and an O(n3logn) bound for the WRP with a fixed starting point and a
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simple polygon. The aquarium keeper problem deals with a problem to find the shortest
closed path inside a polygon that visit each edge at least once. Czyzowicz et al. proposed
a linear time algorithm for the aquarium keeper problem for a simple polygon in [66].

If a guard moving along the shortest watchman route surveys a polygon only at some
selected points, the problem is close to the decoupled approach of the inspection task
with discrete sensing. Authors of [46] call the points as the vision points and proved that
the problem of determining the minimum number of the vision points along the shortest
watchman route is NP-hard. The problem for a street polygon is studied in [45].

The WRP in a polygon P is a special case of the m-Watchmen Routes Problem (MWRP)
that aims to find a route for each of m watchmen such that each point of the polygon P is
visible from at least one route. For m =1 the problem is the WRP. If m is so large that the
total length of the routes is zero, the problem is the stationary AGP. Two variants of the
MWRP according to minimized criterion can be found in literature: the MinSum variant
minimizing the total length of the routes, and the MinMax variant minimizing the length
of the longest route. Nilsson proved that MWRP is NP-hard even in simple polygons for
both criterions [200]. He also investigated a problem for restricted polygons and proved
polynomial algorithms for spiral polygons and histogram polygons.

Probably the first heuristic approach for the MWRP has been proposed by Packer
in [211]. The approach is based on a set of static guards S found by heuristic A1 of [13]
and constructing minimum spanning tree of S. Distances between two guards are found
as length of the shortest path from the visibility graph. The tree is split to m sub-trees (for
m-watchmen) and Hamiltonian routes on each sub-tree are independently constructed.
Vertices along route are substituted by others that shorten the length of the route and
maintain full coverage. Finally redundant vertices of the route are removed. Both vari-
ants (MinSum and MinMax) are addressed by the proposed heuristics.

The WRP can be considered as a variant of the view planning problem (VPP) studied
in robotics, which can also be considered as a variant of the inspection task. The VPP aims
to provide a plan for an automated 3D object recognition and inspection. To provide a
“good” view it is necessary to consider sensing constraints, which depends on particular
sensing device and recognition capabilities. Regarding these constraints the VPP is more
complex than the WRP [232]. Two costs can be consider in the VPP, the sensing cost and
the travel cost from one view point to the next view point. The problem decomposition
into the AGP and the TSP is criticized in [266]. Even in the case that both sub problems are
solved optimally, because they are solved independently, the overall performance can be
poor. Author noted that such decomposition works well if coverage of considered views
do not overlap or those with large coverage overlap are closed to each other. The com-
bination of view and travel costs is addressed in the formulated Traveling VPP, which is
defined on given set of viewpoints. The solution (probably the first unified approach in
robotics) is based on the ILP formulation and rounding algorithm called Round and Con-
nect. The WRP is reduced to the Traveling VPP by a finite number of viewpoints that are
found by the proposed sampling algorithm. The number of viewpoints does not depend
on geometric parameters of the polygon (with holes), the viewpoints are found in O(n12),
where n is the number of polygon vertices.

Two extensive surveys should be explicitly mentioned [236] and [257] to conclude the
visibility problems overview.
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2.4 Routing Problems

If paths between goals are determined, or more precisely if costs between goals are de-
fined, the multi-goal path planning problem can be formulated as a routing problem. The
most famous routing problems are the TSP and its generalized version Vehicle Routing
Problem (VRP), in which capacities of vehicles (salesmen) are restricted. An overview of
approaches for the TSP and its multi-robot variant the MTSP is presented in this section.
Besides, variants of problems that can be applied in the multi-goal planning are also in-
cluded in the overview. A goal is called city in the TSP formulation, thus the term city is
also used for goals in this thesis.

The Euclidean TSP, or the geometric TSP, is a variant of the TSP, in which a distance
between cities is the ordinary Euclidean distance. In combinatorial approaches, the TSP
is typically formulated on a graph G(V,E) where V is the set of cities and E is the set of
connections between the cities. Each edge has associated cost derived from a path (e.g.
the shortest one) between two cities, or another metrics can be used, e.g. time to travel.

The TSP is known to be NP-hard and it is studied for a long time by the operational
research community. Solutions of the TSP can be divided into two types: exact and heuris-
tic. While exact algorithms require lot of computational power, due to complexity of the
problem, heuristic algorithms provides approximate solution in a reasonable time. Two
basic types of heuristics can be defined: constructive and improvement. The constructive
heuristic starts with one city and gradually creates a route. The improvement heuristic
starts with some route that is improved by local search techniques.

Comparisons of heuristic algorithms are presented in [138, 139, 140]. In these com-
parisons, the solution quality and effectiveness of various approaches are discussed. An
influence of supporting data structures are discussed in [99, 208], and with respect to large
problems in [17]. Successful approaches are based on λ–opt heuristics published in 1973
by Lin and Kernighan [182]. Their most powerful heuristic called Lin-Kernighan proposed
in the same year has relatively recent efficient implementation made by Keld Helsgaun in
2000. Helsgaun discussed the effective implementation in [118] and described his imple-
mentation called LKH. However the heuristic algorithm finds an approximation solution,
the optimal solutions are produced with high frequency. The largest problem solved by
the LKH is the World TSP with 1 904 711 cities and the best reported length is 7 515 877 991
(May 12, 2009). The current best lower bound of this problem established by the Concorde
TSP code with the CPLEX solver is 7 512 218 268 (June 5, 2007) [16].

Beside classical heuristics, modern heuristics like tabu search, adaptive memory [169]
or variable neighbourhood search [196] have been proposed to improved quality of so-
lution. The current research is focused on developing meta heuristics over the heuris-
tics [33]. Meta-heuristics guide the search process, and they are non-deterministic and
sometimes use search experience stored in the memory. These approaches include soft-
computing techniques like: Ant Colony Optimization, Genetic Algorithms, Simulated An-
nealing and Neural-Networks.

The Ant Colony Optimization technique is based on distributed autocatalytic process
that simulates behaviour of real ants [73]. Artificial ants use pheromone trails to share
information among regarding paths Moving ant marks path by a trail of this substance.
Other ants detect the pheromone on the ground and decide to follow path in varying
quantities of the substance and reinforce the trail with their own pheromone. If ants
are moving along the shortest path repeatedly from the start to the end the amount of
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pheromone is stronger than on other paths, because ants frequency on trail reinforcement
is higher.

Genetic Algorithms are stochastic algorithms that operate over population of possible
solutions [193]. An individual of population is evaluated by a fitness function. The conver-
gence of the best individuals are satisfied by a selection mechanism, crossover operators
and mutation operators.

The Simulated Annealing exploits an analogy between the way in which a metal cools
and freezes into a minimum energy crystalline structure (the annealing process) and the
search for a minimum in a more general system. The idea is motivated by finding an
equilibrium configuration of a collection of atoms at given temperature. The connection
between combinatorial optimization and statistical mechanics was proposed in [151]. The
algorithm consists of generator of random changes in solutions, evaluating the problem
functions and an annealing schedule that is an initial temperature and rules for lowering
it as the search progresses.

An application of the Neural-Network (NN) to the TSP was started by Hopfield’s work
in 1985 [123]. Followed by different approach called elastic net [77], which has direct ge-
ometrical representation as “rubber band”. It is non-uniformly elongated by an iterative
process until it passes all cities in sufficient distance. Smith [240] noted that before this
work has been published, Fort [96] had been working on using Kohonen self-organizing
process [154] to solve the TSP. In 1988, Angéniol et al. introduced an algorithm based
on the self-organizing principles and reported solution of the Euclidean TSP with 1000
cities. Approaches based on the Kohonen competition and adaptation rules are called
Self-Organizing Map (SOM) and have been used for various routing problems. The SOM
procedure provides transformation from high dimensional data space to low dimensional
map space, it principally deals with vectorized data, however generalization to function
space has been introduced in [101].

The TSP as a benchmark for the Hopfield based neural-network is criticized in [238].
Mainly because the NN uses quadratic formulation, which consists of many local minima,
while heuristic functions are based on the linear formulation, which has more constraints,
but only one local minima, thus direct comparison is not fair. Author’s critic was not
advocacy of inferior solutions, it was observation that performance of the neural networks
for solving practical optimization problems had been relatively untested [240].

The SOM approaches have been mostly applied to the Euclidean TSP, however several
approaches address other routing and optimization problems [231, 239], or are based on
a graph input [274]. Despite the fact that the performance of SOM approaches is worse
in comparison to classical heuristics from the operational research domain, they show
interesting results [56] and can be used to construct a tour that can be improved [43] using
λ-opt procedures [182]. Theoretical properties of SOM have not been proved for general
case [60], although the SOM approach has been widely used in various domains [216, 241].

The classical and modern heuristics are combined in distributed computational envi-
ronment. Solutions can be found by distributed computation of the linear programming
problem formulation or by multi-agent techniques. In [252], different agents are used for
construction, improvements and refining of the solution. An application of the Multi-
Agent Optimization System to the TSP has been presented in [273]. Each agent has only
partial knowledge about the problem and agents are able to support a cooperative search.

One of the routing problem variant is a generalization of the Euclidean TSP called the
Traveling Salesman Problem with Neighborhoods (TSPN). In this problem, each buyer spec-
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ifies a meeting region. The buyer is willing to meet with a salesman within the region
and the salesman wants meet all neighbourhoods. The TSPN is APX-hard and cannot be
approximated within a factor 2 − ε, where ε > 0, unless P=NP [224]. An approximation
algorithm for the TSPN is presented in [76].

A special case of the TSP where a cost of edge depends on edges traversed earlier is
called the Angle Traveling Salesman Problem (Angle-TSP). The problem has been introduced
in Fekete’s Ph.D. thesis [90] and it aims to find a tour of the points with a minimum total
angle. Authors [12] showed that the problem is NP-hard. A problem to decide whether
a set of n points in the Euclidean plane can be connected into closed directed tour con-
sisting of straight line segments such that all angles between consecutive line segments
are from a set A ⊆ (−π, π〉 is called Angle-Restricted Tour (ART). A tour with angles from
A = {α|0 ≤ α ≤ π} is called pseudoconvex. If A =

{
−π

2 ,
π
2 , π

}
a tour is called orthogonal.

A problem of pseudoconvex and orthogonal tours is discussed in [91]. The authors pro-
posed a classification of the problem where tour is a part of orthogonal grid and showed
that the ART problem for an orthogonal tour is NP-hard. Problems of finding a tour with
the minimum length, the minimum number of turns or combination are studied in [21], in
which orthogonal milling problem is shown to be NP-hard and several constant approxi-
mation algorithms are presented.

A problem to find a tour that visits each edge of the given graph is called the Chinese
Postman Problem. The problem can be transformed into a TSP instance or solved directly.
A direct approach for the problem with turn penalties is presented in [55]. The graph is
assumed to be rectilinear, i.e. all edges are meet at 90◦ or 180◦ angles. In such case penalties
can be zero for a straight crossing, two for a right turn, five for a left turn, and nine for
U-turn. This assessment corresponds to complexity off crossroads passing by a car. The
authors compared six strategies how to handle turn penalties.

The Traveling Salesman Problem with Backhauls is studied in [106]. In this TSP variant, a
product is picked up and transported to the depot from some customers at a return path.
Two sets of cities are considered: cities that have to be visited at forward part of the path
and cities that have to be visited at return path to the depot. The algorithm is based on
SOM, where a salesman route is divided into two chains that are adapted to the particular
set of cities. Experimental results are reported for problem size up to 1000 customers and
compared with the exact branch-and-bound method, GENIUS, and its modification based
on the variable neighbourhood search [196]. The SOM is used as a constructive heuristic to
find a tour which is then improved by the 2-opt procedure. Authors reported that the SOM
approach is competitive with the branch-and-bound exact method and the best cutting
heuristic from the solution quality point of view, but requires more computational effort.
They also noted an advantage of SOM flexibility to address the TSP with Backhauls and
remark limitation of the SOM for its inability to address non-Euclidean instances.

Multiple Traveling Salesmen Problem

An extension of the TSP for several entities is the Multiple Traveling Salesmen Problem
(MTSP) that can be formulated as follows: find shortest paths for m salesmen starting
from a given city, passing trough all cities and returning to the starting city. The starting
city is called depot and other cities have to be visited only by one salesmen. The problem
is also called the m-Traveling Salesmen Problem and it is known to be NP-hard. Similarly to
the MWRP two criterions can be considered: the MinSum and the MinMax. A transforma-
tion of the MTSP to the TSP has been proposed in [29], but the solution of the transformed
problem is highly degenerated for the MinMax variant of the primal MTSP [98].
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The first attempt to solve the MTSP-MinMax exactly has been proposed in [98]. The
algorithm is based on a solution of the Distance Constrained VRP. A solution of the MTSP
is used as the distance constraint, which is gradually decreased, and if the VRP does not
have a solution, the previous solution of the MTSP is the exact. A solution of the MTSP
is found by the heuristic algorithm based on the tabu search and neighbourhood heuris-
tics called GENIUS. The MTSP-MinMax for two salesmen without the depot is studied
in [41]. Author proposed characteristic Boolean function for this class of problems that is
monotonic and self-dual for complete graphs with metric distances.

The MTSP-MinMax on a tree is studied by Averbakh and Berman. The location-alloca-
tion variant of this problem deals with finding routes and also depots for each salesmen
according to MinMax criterion. The problem is NP-hard for more than one salesman [24].
The exact solution of the location variant, the problem to find optimal depots, can be
found in linear time for two and three salesmen [25].

The MTSP is an instance of the VRP with unlimited vehicles’ capacities. There exist two
main directions of heuristic approach to solve the VRP: constructive heuristic and 2-phase
algorithms. One of the first constructive heuristic is the savings algorithm introduced by
Clark and Wright in [54]. The problem is decomposed into clustering of vertices into fea-
sible routes and actual route construction in a 2-phase algorithm. Both orders of steps
are used : Cluster First, Route Second and Route First, Cluster Second. Three heuristics were
proposed in [115], they are modified savings, modified sweep and Route First, Cluster
Second. Heuristics are based on combination of GENIUS with the PRIMAL1 heuristic for
the set covering problem and modified 2-opt procedure for the multi-vehicle problem. A
tabu search heuristics are used to escape from a local optimum [169]. A hybrid approach
based on combinatorial local search and evolutionary algorithms are presented in [213],
author reported experimental results for a problem with 120 paper subscribers, one depot,
and four newspaper distributors, a solution was found in thousands of seconds.

The exact algorithms can be divided into three main categories: direct tree search
method, dynamic programming and integer linear programming (IP) [166]. A branch-
and-bound algorithm and algorithm based on cutting planes are presented in [167]. In [168],
authors reported experimental results for asymmetrical distance-constrained VRP up to
100 cities, the reported solution was found in hundreds of seconds. The modified branch-
and-bound algorithm based on the Concorde TSP solver extented by the cutting planes
technique to address the MinMax objective [15] was used to solve the Whizzkids’96 prob-
lem exactly. The solution was found in ten days running on 188 processors of distributed
computing environment. Authors reported sum of processing times scaled to the 500 MHz
Alpha EV6 processor, the computational time was about 72 millions seconds.

A logical framework for vehicle routing planning is proposed in [234]. Authors used
temporal logic to formulate planning task for a single vehicle.

The SOM approach has been used for the Euclidean MTSP-MinMax in [243]. In [159]
authors compared the SOM approach with other soft-computing techniques ACO and
the GA in several non-Euclidean instances of the MTSP. Despite the used naı̈ve approach
of the SOM to deal with non-Euclidean distances, authors reported competitiveness of
the SOM approach from the solution quality point of view and also from the required
computational time point of view.

A comprehensive bibliography of the routing problems with five hundreds references
can be found in [165] and an overview of the MTSP formulations and approaches is pre-
sented in [28].
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2.5 Discussion and Research Directions

The presented overview shows relation of the studied problem with several research top-
ics. The computational geometry is focused on classification of problems and particular
exact algorithms for restricted class of problems. On the other hand, problems motivated
by a robotic application typically assumed general representation of the environment and
more realistic capabilities of the robot, which leads to additional constraints. It is clear
that it is necessary to restricted studied problem by properly selected assumptions. The
following selection of assumptions is based on the problem motivation and possible prac-
tical applicability of the proposed solution in the real rescue mission experiments, where
real-time requirements have to be satisfied. In addition, the proposed solution should be
flexible enough to address particular modifications of the problem related to the cooper-
ation of humans and robots during a search and rescue mission.

The first assumption that have to be made is a suitable environment representation.
The visibility problems are mostly studied for a polygonal domain, whereas occupancy
grids are suitable for map building. Recent results in creation of a geometrical represen-
tation of the environment are very promising, and also the environment is known in the
inspection task, therefore polygonal maps can be assumed.

Regarding an ability of approaches to deal with various constraints the flexibility of
randomized approaches is a great advantage. The randomized motion planners seem to
be very promising, the RRT is one of approaches that is able to address kinodynamic con-
straints. For the AGP or the sensor placement problem, the randomized algorithm [108]
provides solution for a realistic physical constraints [109, chap. 48]. The restricted visi-
bility range is a practical assumption for the related search and rescue mission as smoky
environment can be expected.

The multi-goal path planning problem formulated as the TSP is a combinatorial prob-
lem where a path between cities represents a travel cost without direct relation to the
environment and robot capabilities. To guarantee traversability of a path between cities it
is necessary to solve the path planning problem between the cities. The TSP is NP-hard,
and the path planning problem considered as the motion planning can be in PSPACE,
therefore to make studied approach feasible and applicable it is necessary to consider a
model of the robot simple enough, but still sufficiently close to real mobile robotic plat-
forms. A robot with differential nonholonomic drive is such suitable model, because it
represents commonly used research-platform for indoor experiments.

The problem of cooperative behaviour of several robots can be considered as an opti-
mization problem how to allocate goals to particular robots to fulfill the inspection task.
The MTSP formulation with the MinMax criterion seems to be a natural choice.

The SOM approach to solve the TSP, particularly MTSP-MinMax [243], has been con-
sidered interesting, because a solution is represented by a ring of nodes that evolves in
the input space. A direct geometrical representation of the ring can be advantageous in
the studied hybrid visibility problems where geometric properties are necessary. The idea
of the ring evolving in a polygonal domain is the main reason why the SOM approach
is selected as the main technique in the studied multi-goal path planning problem in this
thesis, therefore a more deep review of SOM approaches for the TSP is presented in Chap-
ter 5.
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Chapter 3

Problem Specification and Thesis
Goals

3.1 Problem Specification

Multi-Goal Path Planning in the Inspection Task:

Given a polygonal map of the environment find a set of paths for given number of mobile
robots such that the whole environment (free space) is inspected (seen) by at least one
mobile robot while robots are moved along the planned paths, the length of the longest
path should be minimized, the visibility range of the robot is restricted and differential
nonholonomic drive of the robot is assumed.

3.2 Thesis Goals

1. Propose a method suitable for the cooperative inspection task with discrete sensing
based on the decoupled approach: the AGP and the TSP/MTSP-MinMax. Consider
applicability of the method in a search and rescue scenario, where heterogenous
group of mobile robots (entities) is mandatory. Each entity can have different mov-
ing capabilities. In addition, the method should address the re-planing problem, in
which entities have different initial positions.

2. Consider applicability of the SOM approach for the MTSP-MinMax in additional
cooperative tasks, e.g. problem of cooperative visits of areas of interest.

3. Consider applicability of the SOM approach to address the inspection task with
continuous sensing, the MWRP.

4. Consider motion planning constraints in the studied multi-goal path planning prob-
lem.

25



3.2. THESIS GOALS

26



Chapter 4

Finding Sensing Locations

Sensing locations are places in a workspace where measurements are performed. For the
discrete sensing the number of sensing locations is finite and the problem is to find a set
of sensing locations can be formulated as the Art Gallery Problem (AGP). In the context of
the inspection planning for a mobile robot, special attention have to be care to adequately
model sensing capabilities of the real robot. The most straightforward sensing model is
based on unrestricted omnidirectional visibility of a point guard, which is also assumed
in the original AGP formulation. A brief overview of real sensors is presented in the next
paragraphs to discussed applicability of these assumptions in the context of the inspection
task in a search and rescue mission and currently used sensors.

Two types of sensors are widely used in the mobile robotics, laser based range finders
and cameras [203]. The sensing capabilities of these sensors are limited, and two param-
eters are typically considered: the range distance and the field of view. For example the
laser measurement system SICK LMS 200 provides measurement range up to 80 meters
with the angle 180◦ [2] or SICK S300, which provides wider angle 270◦, but with worse res-
olution [4]. The HOKUYO UTM-30LX device has 30 meters sensing range and the wide
angle 270◦[5] or the URG-04LX model with the maximal range 4 meters and the angle
240◦. The range 80 meters can be considered practically unrestricted for typical indoor
environment. However these scanners do not provide omnidirectional view, two such
devices can be used in specific configurations to provide full 360◦ view, e.g. Figure 4.1a.
Another options are to use rotating mechanism or a full 3D scanner that provide 360◦ hor-
izontal field of view [117] or commercially available IMAGER 5003 (Lara 25200), which
provides 360◦×310◦ field of view, shown in Figure 4.1b. An overview of used configura-
tions of scanners can be found in [203]. Minimum sensing range is not typically an issue,
as it is small and it is negligible in comparison to size of the robot and position of the
device at the robot.

The visibility range of camera depends on the used optical set, resolution and character
of finding object that requires sufficient resolution to reliably recognize (inspect) an object
of interest. The omnidirectional field of view can be obtained by turning camera or whole
robot at the sensing location. The camera can be affected by vibrations during motion,
therefore to obtain an accurate image it can be necessary to slowdown or completely stop
the robot. The full angle of view can be supported by a hyperbolic mirror [249], see Fig-
ure 4.1c, or a panoramatic camera can be used, e.g SONY RPU-C251 in Figure 4.1d. The
showed camera provides image with 1.3M-pixel resolution at 7.5 frame rate or 2M-pixel
in case of the RPU-C2512 model [7].
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(a) (b) (c) (d)

Figure 4.1: Omnidirectional sensors: (a) configuration of two laser scanners mounted on
G2Bot platform used in the Gerstner Laboratory to provide omnidirectional sensing, (b)
3D scanner IMAGER 5003, (c) Pulnix digital camera with a hyperbolic mirror, (d) desktop
panoramatic camera SONY RPU-C251.

The examples of sensing devices show that the omnidirectional view can be realized
with two laser scanners or panoramatic cameras, thus it is not an issue. On the other hand,
the restricted visibility range have to be considered, mostly due to the fact, that to recog-
nize searched object it is necessary to have sufficient level of details. Also the visibility
range depends not only on capabilities of device, but also on the current environment
conditions, e.g. smoke in a burning building during search and rescue mission. The AGP
approaches typically do not considered particular visibility constraints, which is the main
reason why authors of [107] call the problem sensor placement rather than the AGP.

Even in a case that only visibility range is restricted and the sensor placement is more
close to the AGP, an important aspect related to the mobile robotics have to be consid-
ered. The position of the sensing location must respect size of the robot and particular
surrounding environment, that means a sensing location must be reachable by the robot.
The robot has to visit all necessary sensing locations on an inspection path in order to
“see” the whole environment and find an object of interest. The multi-goal path plan-
ning problem can be formulated as the TSP or the MTSP, where sensing locations become
cities, but path between locations have to be found. It is also important that these paths
have to be traversable by the particular mobile robot. Regarding the path planning part
of the inspection, a set of sensing locations should be found with respect to capabilities of
particular mobile robot.

Two important aspects of the finding sensing locations have to noted. Even that opti-
mal and polynomial AGP algorithms have been proposed for restricted class of the en-
vironment (e.g. orthogonal polygons), the problem is NP-hard for a polygon with holes,
therefore only approximate solution can be expected. Also it should be noted that the
AGP formulation, which minimize number of guards (cities), does not necessary lead to
the shortest inspection path, because the path planning is not a part of the problem.

The rest of the chapter is organized as follows. The next section summarize problem
specification. A brief summary of supporting algorithms and discussion of issues of the
polygonal representation are presented in Section 4.2. Section 4.3 presents three sensor
placement algorithms for restricted visibility range. Experimental results are presented
in Section 4.4. The chapter is concluded with discussion of the presented results and the
proposed algorithm, Section 4.5.
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4.1 Problem Specification

The problem is to find a set of sensing locations that are placed in Cfree of particular mo-
bile robot and the whole environment is inspected by performing measurements at each
sensing location. The robot working environment is a prior known and it is represented
as a polygon with holes W . A robot is assumed to be differential nonholonomic drive
robot with an omnidirectional sensing capability. The robot is modeled by a disk with the
radius ρ, thus Cfreeis two dimensional and it can be represented by a polygonal domain.
The visibility range is modeled as a disk with the radius d, where d is restricted visibility
range, or a value higher than size of the W in the case of unrestricted visibility range.
A disk is a polygon with the particular number of vertices.

Sensor Placement Problem - For a given workspace W ⊂ R2, find a set of sensing
locations G such that every point ofW is d-visible from at least one point of G.

The polygon representing the robot workspace is called map and it consists of the bor-
der polygon and set of obstacle polygons. Obstacles are polygonal representation of Cobs.
The polygon is formed by the ordered sequence of vertices, which define orientation of
the polygon. A map edge connects two consecutive polygon vertices and it has free space
of the environment on its left side, hence the orientation of the border is counterclockwise
(CCW) and obstacles are clockwise (CW) oriented. Polygons are simple and do not con-
tain three collinear vertices1. The map border and obstacles do not intersect even at poly-
gon vertex. The free space is one connected component, otherwise disconnected compo-
nents represent a set of polygonal maps. Without loss of generality only single component
is assumed.

To follow a notation of the AGP, a sensing location is also called a guard in this thesis.

Once guards are found, the inspection planning is formulated as the routing problem
to find a sequence of guards visits such that the total length of the path is minimized.
Shortest paths between guards can be found as the shortest-path roadmap constructed
from the visibility graph, e.g. in O((nv +ng)

2) [210], where nv denotes the number of map
vertices and ng is the number of guards. The path planning problem is formulated as the
TSP on a graphG(V,E), where V denotes guards andE is a set of edges with cost derived
from the length of the shortest path between guards, the TSP can be then solved by a TSP
solver. Without loss of generality G(V,E) is assumed to be complete.

The quality of found set of guards is evaluated according to two costs: the cost of
sensing (the number of guards) and the cost of motion (the length of the inspection path).

4.2 Supporting Algorithms

4.2.1 Environment Representation

The polygonal representation of the robot workspace can be stored in various ways. Three
commonly used representations are: sequence of vertices, Double Connected Edge List
(DCEL), Nef polyhedra. Each representation has particular advantage. The sequence of
vertices is easy to manipulate. The main advantage of the DCEL [217] is direct access to
the topological relation, however it is little bit complicated to be maintained than just a

1This assumption is not restrictive, because it practically means simpler and more readable algorithms,
because collinearities can be often solved in the cost of more complex algorithm.
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sequence of vertices. A planar Nef polygon can be obtained from a finite set of open half
spaces by Boolean operations: unions, intersection, and complement [114]. Such represen-
tation can be used for planar case and it is also suitable for higher dimensions.

Operations with geometric primitives need special attention regarding the numeric
precision and degenerative cases [230]. Geometric operations need precise arithmetic op-
erations, and to avoid possible issues with limited floating-point precision, an exact repre-
sentation can be used. The cost of precise representation such as GMP [111] is in increased
computational time [95]. An alternative to exact representations can be extensions of the
standard floating point representation that provide correct rounding. The library MPFR
is an extension of the IEEE 754 that provides efficient multiple-precision floating-point
arithmetic, correct rounding of implemented operations and mathematical functions [97].

For practical applications it is always necessary to select between sufficient robustness
and speed of used algorithms. The selection can be based on usage of an appropriate
numeric type, e.g. integer, double or arbitrary precision types. For an example the Com-
putational Geometry Algorithms Library (CGAL) provides geometric primitives grouped
into Kernel concept, which allows to select a required numeric type [6].

4.2.2 Polygon Filtering

However a geometric representation is memory efficient in comparison to the grid (spa-
tial) representation, the number of vertices can be still unnecessarily high. The number
of vertices of the map affects the required computational time the algorithms and also it
has influence to numerical issues. For example if two vertices of a non-convex polygon
are very close, removing one of them will lead to have convex polygon, which can be
easily covered by one guard placing at any position inside the polygon. These reasons
lead to pre-process polygonal representation of the environment to reduce the number of
vertices. Such techniques are used in mapping algorithms to create a polygonal represen-
tation of surrounding environment of a mobile robot [164].

Algorithm 1: Polygon filtering based on the relevance measure
Input: P - simple polygon
Input: k - minimal allowed value of relevance
Result: filtered polygon P
Require: |P | > 3

repeat
vi ← argminv∈P K(v)
km ← K(vi)
if km < k then

P ← P \ vi
until km ≥ k OR |P | = 3

A polygon filter technique based on the relevance measure [171] is one of the suitable
algorithm to filter unnecessary vertices, see Algorithm 1, in which K(v) is the relevance
measure based on the Euclidean distance

K(vi) = |vi−1, vi|+ |vi, vi+1| − |vi−1, vi+1|, (4.1)

where vi−1 and vi+1 are neighbouring vertices of the vertex vi in the polygon P [270].
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An example of filtering is shown in Figure 4.2. The left figure shows original map with
14 highlighted filtered vertices for k=5 cm, the right figure shows final map with 23 ver-
tices. Filtered vertices are result of automatic process to obtain polygonal representation

(a) 37 vertices (b) 23 vertices

Figure 4.2: Filtered vertices at corners of the rooms.

from a drawing of building plan. The plan is firstly scanned into raster image, then a
set of morphological operations are applied, and finally pixels are approximated by line
segments that are connected to form closed polygons [158].

4.2.3 Obstacle Growing

A found set of sensing locations represents positions in the environment, where a mobile
robot performs measurements. To ensure that these locations are reachable by the robot,
it is necessary to consider size of the robot during guards positioning. Guards have to
be in Cfree of the mobile robot. A polygonal representation of Cfree can be found by the
application of the Minkowski sum to all obstacle regions O and a disk D representing
rigid body of the robot with circle circumference. The Minkowski sum can be defined as

O ⊕D = {x+ y | x ∈ O, y ∈ D}.

Obstacles are expanded by the radius of the disk, while the border is shrunk. The shrunk
operation represents the Minkowski difference and can be defined as O 	 D = O ⊕
(−D) [176]. For convex polygons the Minkowski sum can be computed exactly [94]. An
approximation of the Minkowski sum or difference can be found as a buffer operation in
GIS oriented computational libraries like the JTS [8] or GEOS [10].

The robot workspace and also Cfree are represented by polygons, the term map de-
noted to the polygonal representation of the environment is also used for polygonal rep-
resentation of Cfree in this thesis. The main advantage of the shrunk workspace (Cfree)
is that a point robot can be assumed. Each sensing location must be in Cfree, while the
required guarded space is the workspace itself. For simplicity it is assumed that coverage
the polygonal map representing Cfree will also cover the workspace, thus only the shrunk
map is considered in sensor placement algorithms.

Examples of expanded obstacles are shown in Figure 4.3, the original contour of the
map is represented by the red line segments. The first two images show shrunk maps
by the same value, the difference is in the approximation of the disk. The first case (Fig-
ure 4.3a) uses only two vertices at a corner, while the second (Figure 4.3b) uses 16 vertices.
The rightmost contains joined obstacles into one polygonal region as a result of applica-
tion of larger disk.
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(a) (b) (c)

Figure 4.3: Example of shrunk free space, the original map is shown in red.

4.2.4 Computation of Visibility

The key component for guarding art galleries is an algorithm to find a visibility graph and
a visibility polygon. If a map contains n vertices all visible vertices (or visibility polygon)
for particular point can be found in O(n log n) [71]. Alternatively the full visibility graph
of the map can be found in O(n2) by the algorithm based on rotation trees for a set of
segments [210]. Two particular issues of the visibility computation should be considered.
The first one is more related to collinearities and the second issue relates to the model of
restricted visibility.

Although a map does not contain three consecutive collinear vertices, the computation
of the visibility has to deal with collinearities. An example is shown in Figure 4.4, where
a point p (visualized as a yellow disk) lies at a diagonal of the map. Probably the most
natural way to compute visible vertices from p is shown in Figure 4.4a, while a set of
visible vertices suitable for a k-searcher model of the guard is shown in Figure 4.4b. The
rightmost figure shows star shaped polygon, which represents visibility polygon from p.

(a) (b) (c)

Figure 4.4: Visible vertices from the point and its visibility polygon.

A disk is used to model the restricted visibility range in a polygonal domain. A discrete
representation of the disk can be formed by particular number of vertices. The area of the
disk depends on the number of vertices. If the area of the visibility polygon is used in a
covering algorithm, the approximation of the disk can affect the algorithm performance.
Examples of several visibility polygons (disks) are shown in Figure 4.5. If only eight ver-
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Figure 4.5: Discrete disk approximation and area of the approximation with the radius
1 m in percents of the disk area.

tices are used, the error of coverage area can be up to ten percents, which is of course
only hypothetical case, because the shape of the disk always leads to use more guards for
coverage rectangular-like office environments. More than 24 vertices seems be unneces-
sary and such approximation only increases computational burden. The disk used for the
restricted visibility range has always 24 vertices in this thesis.

4.3 AGP - Algorithms

The simple solution to solve the AGP can be directly based on Fisk’s proof [93], which
utilizes triangulation of a polygon. Beside this simple solution, several AGP algorithms
providing significantly less number of guards can be found in literature. Two sensor place-
ment algorithm from the robotic domain have been selected to study the problem of find-
ing sensing locations. The approaches have been selected, because both algorithms have
been applied in mobile robotic navigation and both address the restricted visibility range
constraint. The first approach is based on deterministic polygonal division [147], while
the second is based on randomized sampling [108]. These two algorithms are briefly de-
scribed in the next two sections. A new proposed algorithm called the Boundary Placement
is described in Section 4.3.3, it has been designed especially for small visibility range (units
of meters) and with consideration of the consecutive path planning problem.

4.3.1 Convex Polygon Partitioning - CPP

A deterministic sensor placement algorithm based on the decomposition of a polygonal
environment representation into a set of convex polygons has been proposed in [147].
Each convex polygon is covered by one guard and to satisfy restricted visibility range
constraint a distance from the guard to a vertex of the guarded polygon has to be less than
visibility range d. If a convex polygon is too large, it is divided into convex sub-polygons
until each sub-polygon can be covered by one guard with d-visibility and omnidirectional
view. The primal convex partition is found by Seidel’s algorithm [233] and the total com-
plexity is linear with the number of found guards [147]. An abbreviation CPP (Convex
Polygon Partitioning) is used as a reference to the algorithm in this thesis.
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The CPP algorithm is deterministic and found set of guards is a property of the polyg-
onal representation of the environment. The number of found guards depends on the par-
titioning to convex polygons. For a polygon with very small segments, vertices can cause
additional convex polygons, which must be covered by an additional guard. This issue
can be partially solved by the polygon filter technique described in Section 4.2.2. Exam-
ples of found set of guards and particular convex sub-polygons are shown in Figure 4.6.

(a) unrestricted visibility range (b) d=2.0 m (c) d=0.5 m

Figure 4.6: Found guards by the CPP algorithm for the visibility range d.

4.3.2 Randomized Dual Sampling Schema - RDS

The idea of the Randomized Dual Sampling Schema (RDS) is based on sampling the con-
straints of the problem (the points to be covered) instead of its domain [108]. The algo-
rithm finds set of guards to cover the boundary of the free space and it performs in two
steps. At first, the boundary is sampled by a point and its visibility polygon is computed.
After that, the polygon is sampled m times and a point with the highest coverage is de-
noted as new guard. The visibility polygon of the new guard is subtracted from uncovered
free space and the process is repeated until the whole free space is covered.

Algorithm 2: Randomized dual sampling schema
Input:W- workspace to be covered
Input: d - maximal sensing range
Input: m - number of samples
Result: G - set of found guards (sensing locations)

U ←W // set uncovered free space

while |U | > 0 do
pb ← select random point at border of U
V ← visible(W, pb, d) // d-visible polygon from pb
{p1, p2, . . . , pm} ← random points in V
p? ← arg maxpi∈{p1,p2,...,pm} |U ∩ visible(W, pi, d)|
G← G ∪ {p?}
U ← U \ visible(W, p?, d)

The sensor placement procedure is summarized in Algorithm 2, where |.| denotes area
of the particular polygonal part of the workspace. The algorithm has been slightly modi-
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fied to address coverage of the whole interior of the workspaceW and not only its bound-
ary. The set U represents uncovered part of W instead of the boundary of W and |.| re-
spects the interior instead of the total length of the uncovered boundary. The algorithm is
complete and it is terminated after finite number of iterations, because at each iteration a
random point is generated at border of U and visibility polygon of the new guard is sub-
tracted from U . An example of the algorithm performance is shown in Figure 4.7, small
disks denote random points.

(a) (b) (c)

Figure 4.7: Example of the RDS performance; (a) initial random point pb (in blue) at border
of uncovered free space U , its restricted visibility polygon V (yellow) and set of random
points, (c) reduced uncovered free space U after the first guard has been found, (d) a cov-
ered free space after several iterations.

The complexity of the algorithm depends on computation of the visibility polygon,
which can be done in O(n log n), where n is the number of vertices of W . The restricted
visibility is computed as an intersection of the visibility polygon and a disk. The disk
is formed from k edges and its radius is the visibility range d. Newly covered portion
of the free space is subtracted from U , which can increase the number of vertices up to
knng, where ng is the number of found guards. The overall complexity can be bounded
by O(mnng log(nng)), where m is the number of random samples.

An advantage of the randomized algorithm is its ability to deal with additional con-
straints. In [108], authors consider the minimal visibility range constraints and the inci-
dent angle constraints, which model a situation that a laser beam is not reflected to the
sensing device for too wide incident angle of the laser beam with the surface normal. The
angle constraint cannot be applied for the coverage of the whole free space and it is not
considered in the thesis, however it can be used for the boundary cover.

4.3.3 Boundary Placement - BP

The previous algorithms provide sufficiently small number of guards (RDS) or are very
fast (CPP) and they have been successfully deployed in the inspection task [108, 69, 147].
Both algorithms find a set of sensing locations independently to the consecutive path
planning problem. The path can be unnecessary long even in the case of the exact TSP
solution, although the motivation of the discrete sensing is higher cost of the measurement
than the cost of motion to the sensing locations. The proposed Boundary Placement (BP)
algorithm tries to consider length of the inspection path during sensor placement, which
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is based on the randomization process of the RDS. The randomized sampling is guided
by a priori knowledge about the environment structure and positions of already found
guards. The main idea follows greedy principle and suggestion to do not place guards
unnecessary far from each other, thus guards should be placed close to each other and the
path to visit all guards is expected to be shorter. The idea has been experimentally verified
and preliminary experiments [85] indicate better results from the length of the planned
path point of view. Principle, description of the algorithm, and a new post-optimization
procedure are presented in this section.

One of the most favorable location for a guard is at the reflex vertex of the map, see
for an example Figure 4.3 in [211], but it is not necessary the case for the visibility with
restricted range. In such case, it is needed to place guard in at least visibility range dis-
tance from an obstacle. From the path planning point of view, it is not necessary to move
the robot closer to walls (or obstacles) than at a perimeter of visibility range. This con-
sideration leads to place guards firstly at a pre-specified distance from obstacles and then
place additional guards to cover the rest of the uncovered free space. The primal guards
positioning is at the boundary of the shrunk free space by the particular distance. The
boundary represents prior knowledge how to sampleW .

obstacle

boundary

interior 

guards on the boundary

exterior

(a)

new guard

obstacle

boundary

exterior

interior 

(b)

Figure 4.8: Principle of the Boundary Placement algorithm.

The main idea is demonstrated in Figure 4.8. The boundary is shown as green seg-
ments and its distance to the obstacle is very close to the restricted visibility range d. After
placing guards at the boundary, the uncovered free space is divided into two sets of re-
gions. The first set is called interior and it contains polygons inside the boundary, the set
is represented by red polygons. The important property of these polygons is that they are
not connected with obstacles. The exterior set is the second set and it represents regions
outside the boundary. The second part of the idea can be demonstrated by an example
in the same figure. If the boundary is covered by the set of blue guards, see Figure 4.8b,
then to cover a part of the exterior, new guard can be place in a certain distance from the
already placed guards. A path connecting such sensing locations is directed by the guards
at the boundary, while added guards, like the yellow guard in the figure, do not lead to
significant change of the path direction. This idealized case demonstrates the main idea
behind the algorithm design.

The BP algorithm consists of four parts. The first three parts correspond to covering
the boundary, interior and exterior sets. The fourth path is a post-processing procedure
to reduce the number of found guards by replacing two very close guards by one guard
with the same coverage. Similar randomized schema to the RDS is used, but the second
sampling is replaced by two heuristic strategies.

Large region cover strategy - firstly selects a random point g at the boundary of the un-
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Figure 4.9: Large region cover strategy.

covered region, which is not a part of an obstacle, see Figure 4.9a. Then a midpoint c of
the longest part of the circle (with the radius 2d, where d is the visibility range) lying in-
side the uncovered region is determined, Figure 4.9b. Finally, a new guard is placed in the
middle of the segment (g, c), see Figure 4.9c.
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new guard

exterior
not covered
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Figure 4.10: Small region cover strategy.

Small region cover strategy - also starts with a random sample point p at the boundary,
which is not a part of an obstacle, see Figure 4.10a. Then, the closest already found guard
g, which is directly visible from p, is determined. If such a guard is not found, the point
p is used as a new guard. Otherwise a new guard is placed at the segment (g, p) close to
g as much as possible, see Figure 4.10c. The new guard should cover same portion of the
uncovered free space as the point p. More precisely, p lies at a border of one of the region
that is part of the set of regions. Only this particular region is being covered, which means
only its covered area by p is considered.

The BP algorithm is summarized in Algorithm 3. The second and third parts of the
algorithm are almost identical, except the set of uncovered free space I resp. E. It is ex-
pected that the cover of the interior will also cover part of the exterior, that is why the
covering interior precedes the covering exterior. The symbol δ denotes a border of the
polygon. The polygon is an open set, thus the border is difference between the closure of
the polygon and the polygon. Both the interior and exterior are collections of polygons,
hence a particular polygon from the collection is denoted as Ip ∈ I or Ep ∈ E.

The cover strategy is the large region cover strategy or small region cover strategy. It is
selected according to area of the particular polygon Ip or Ep,

|Ip| ≥
{
µIπd

2 large region cover strategy,
otherwise small region cover strategy. (4.2)

An area of the visibility disk (with the radius d) is multiplied by µI or µE to estimate size
of the particular uncovered region Ip or Ep respectively.
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Algorithm 3: Boundary Placement Algorithm
Input:W - workspace to be covered
Input: d - visibility range
Input: δB - the boundary (border of shrunk free space)
Result: G - set of found guards (sensing locations)

U ←W // set uncovered free space

Part I while |δB| > 0 do
g ← select random point at δB
δB ← δB \ visible (W, g, d)
G← G ∪ {g} // add boundary guard to the set of guards

Part I - Boundary Cover
Part II T ← U \

⋃
gj∈G visible(W, d, gj) // determine uncovered free space

I ← {Ii|Ii ∈ T ∧ (Ii ∩ δW = 0)} // interior set

while |I| > 0 do
p← select random point at δI, p ∈ Ip, Ip ∈ I
g ← cover strategy(p, |Ip|)
I ←

⋃
Ii∈I Ii \ visible (W, g, d) // cover interior set

G← G ∪ {g} // add interior guard to the set of guards

Part II - Interior Cover
Part III E ← (U \

⋃
g∈G visible(W, g, d)) \ δW // exterior set

while |E| > 0 do
p← select random point at δE, p ∈ Ep,Ep ∈ E
g ← cover strategy(p, |Ep|)
E ←

⋃
Ei∈E Ei \ visible (W, g, d) // cover exterior set

G← G ∪ {g} // add exterior guard to the set of guards

Part III - Exterior Cover
Part IV G← reduce(W, d,G) // post-processing optimization

The fourth part of the algorithm is a post-processing optimization to reduce the set of
found guards. A guard can be placed close to previously found guards, therefore guards
can cover large portion of the same space and can be possibly replaced by one guard. The
optimization procedure is following.

1. LetW is a polygonal map and G is a set of guards.

2. Create pairs of mutually visible guards {G1, . . . , Gn} that are closer than the visibil-
ity range d, Gi = {gi, g′i}, gi 6= g′i, |(gi, g′i)| ≤ d, gi ∈ G, g′i ∈ G.

3. Sort the pairs according to distance between guards and select pairs with short-
est distance between guards such that each guard is only in one such pair, GP =
{G1, . . . , Gk}, gi ∈ Gi, gi /∈ Gj , i 6= j, i, j ∈ {1, . . . , k}.

4. Compute coverage of guards, which are not in the selected pairs, the uncovered free
space by these guards is denoted as U .

5. Select pair Gs from GP with the closest guards. Compute coverage of the guards
Gs = {gs, g′s} as P s = visible(W, gs, d) ∩ U , P ′s = visible(W, g′s, d) ∩ U and cover-
age of the midpoint p = midpoint(gs, g

′
s), Pp = visible(W, p, d) ∩ U . Select guards

according to the following criterions.

(a) If (P s ∪ P ′s) \ P p = ∅ then replace guards gs, g′s by the new guard p, G ←
{p} ∪G \ {gs, g′s} and update uncovered free space U ← U \ P p, go to step 6.
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(b) If |P s| > |P ′s| ∧ P ′s \ P s = ∅ then use gs, G← G \ {g′s} and update uncovered
free space U ← U \ P s, go to step 6.

(c) If P s \ P ′s = ∅ then use g′s, G ← G \ {gs} and update uncovered free space
U ← U \ P ′s, go to step 6.

(d) use both guards gs and g′s, update uncovered free space U ← U \ (P s ∪ P ′s),
go to step 6.

6. Remove the processed pair Gs from the set of pairs GP ← GP \ {Gs}.
7. Repeat step 5 if GP is not empty.

An example of partial solutions in particular parts of the BP algorithm is shown in Fig-
ure 4.11.

(a) the boundary at b=1.5 m (b) boundary guards (c) interior coverage

(d) exterior coverage (e) guards reduction (f) final set of guards

Figure 4.11: An example of BP performance, visibility range d=2 m.

Complexity of the algorithm is very similar to the RDS. AssumeW is represented by
n vertices. The first part requires computation of visibility polygon for each new guard,
which can be done in O(n log n). The second and third parts are little bit complicated as
they require computation of the closest guard and determination of the new point to cover
the region. The closest visible guard gc can be found as an intersection of the full visibility
region of the point pwith the set of guards2. The point p belongs to the particular polygon
of the polygon collection I , or E, the furthest vertex v of the particular polygon Ip, or Ep,
is determined according to its Euclidean distance to gc. The distance between gc and v is
used to estimate the position of the new guard gc according to the visibility range d. Then,
a visibility polygon for the new guard candidate is determined. The small cover strategy

2E.g. by Boolean operation on Nef polyhedra representation.
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is applied for small polygons of Ip or Ep, therefore its number of vertices is expected to
be less than n and determination of the vertex v is negligible according to computation
of required visibility polygon from p. That means time complexity can be bounded by
O(n log(n)). The large cover strategy also requires additional computation of a visibility
polygon. At first, a midpoint of the longest circle part is determined in O(k) steps, where
k is the number of disk vertices, then the guard candidate is placed at the center of the
segment from the random point at the border of the uncovered polygon and the midpoint.
Similarly to the RDS, coverage of the new guard is subtracted from the uncovered free
space, which can increase the number of vertices. The complexity of the first three parts
depends on the visibility polygons and can be bounded by O(nng log(nng)), where ng is
the number of found guards.

The last optimization procedure requires computation of mutually visible guards, which
can be done in O((n + ng)

2). All pairs can be sorted in O(n2
g log(n2

g)), but only ng/2 pairs
can be selected at maximum and only ng/2 new guards can be determined, therefore com-
plexity of the determination of visibility polygons is not increased. The overall algorithm
complexity can be bounded by O(nng log(nng) + n2 + n2

g log(n2
g)).

The performance of the BP algorithm mostly depends on the initial boundary selection
that can be obtained as a border of the shrunk free space. The shrunk free space can be
found by the Minkowski sum of the polygon and a convex disk, therefore the boundary
determination can be bounded by O((nk)2), where n is the number of polygon vertices
and k is the number of disk vertices.

(a) the boundary at 0.5 meters (b) the boundary at 1.5 meters (c) the boundary at 2.5 meters

Figure 4.12: Examples of the boundary at different distances from obstacles of the polyg-
onal map.

The original idea of the BP algorithm expect the boundary at a distance similar to
the visibility range. If a boundary is created at a very small distance to the border of
the polygon, guards will be placed unnecessarily close to obstacles. On the other hand,
if a distance is relatively high, the boundary created from the shrunk free space can be
degenerated. In a degenerated case, a large portion of the free space is a part of the exterior
and heuristic approach is used. Examples of the boundary found as border of the shrunk
free space by a distance b are shown in Figure 4.12. Performance of the algorithm for
various boundaries and visibility ranges has been studied and results are presented in the
next section.
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4.4 Experimental Results

The performance of the presented sensor placement algorithms have been experimentally
evaluated within three maps of real environments3. The real environments have been se-
lected because they provide representative experimental results. The environments were
used for real experiments in a search and rescue missions during solution of the PeLoTe
project. Polygonal maps of these environments have been obtained semi-automatically
from the CAD models of the buildings. Properties of the maps are presented in Table 4.1.

Map name
Size No. No.

[m ×m] Holes Vertices

jh 20.6× 23.2 9 277
ta 40.1× 47.2 2 125
pb 133.5×105.0 3 137

Table 4.1: Basic properties of used maps.

The environments represent typical office like indoor environment, which provide re-
alistic view to particular behaviour of studied algorithms for restricted visibility ranges.
The maps are visualized in Figure 4.13. The map jh contains several rooms and however

(a) map jh 20.6× 23.2 m (b) map ta 40.1× 47.2 m (c) map pb 133.5× 105.0 m

Figure 4.13: Testing environments jh, ta and pb.

it looks like rectangular environment, due to noisy data not all rooms are rectangular. The
map ta is larger and contains only three rooms and wide long corridors. The main feature
of this map is an obstacle inside the free space, because the shape is rounded it contains
several reflex vertices, which increases difficultness to cover the free space. The last map
pb is the largest environment and it is represented mostly by straight corridors.

At first, each algorithm is examined separately to find the most suitable set of its pa-
rameters. The experimental evaluation is performed for a set of visibility ranges {inf, 10.0,
5.0, 4.0, 3.0, 2.0, 1.5, 1.0} meters, where inf denotes the unrestricted visibility range. The
quality of solution is evaluated according to two costs: the number of found guards and
length of the tour over the set of guards as a solution of the related TSP. The TSP is solved
exactly by the Concorde solver [16] up to 600 guards (cities). For higher number of guards

3Besides, the algorithms have been experimentally verified in additional environments, but mainly to test
the robustness without detail performance evaluation.
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Chained Lin-Kernighan heuristic [17] is used, because required computational time to
find the exact solution is too high (several hours). It practically means that almost all prob-
lems have been solved exactly for all visibility ranges and maps jh and ta, and visibility
ranges higher than two meters and map pb.

The RDS and the BP algorithms are randomized, therefore 20 solutions are found for
each problem4. To decrease the number of presented values, the standard deviations are
not presented, they are generally in units of guards and increase with lower visibility
range. Standard deviations of lengths are in units of percents and decrease for lower visi-
bility range. Presented absolute values of the number of guards and length of the tour are
rounded to integers, which is natural for the guards and tenths represents only fraction of
percent of the length. To compare performance of algorithms, ratios are used according to
selected algorithm variant. All computations have been performed using a single core of
the Athlon X2 at 2 GHz CPU, 1 GB RAM, running FreeBSD 7.1, however algorithms have
been implemented with different libraries.

4.4.1 Algorithm CPP

The CPP algorithm is sensitive to the number of map vertices, or more precisely to the
number of reflex vertices. Performance of the algorithm according to the number of map
vertices has been studied for maps filtered by the algorithm presented in Section 4.2.2.
Five values of the relevance measure k have been considered, from one up to five cen-
timeters. For k=5 cm the number of vertices is reduced almost two times. Higher value
of k can lead to remove more vertices, but maps are too degenerative from human point
of view. Also produced polygon can be non-simple and inappropriate for the CPP algo-
rithm. Particular properties of the filtered maps are presented in Table A.1. Results for
selected values of k are presented in Table A.2.

Solutions for the map jh does not benefit from the reduced number of vertices, because
for k=0 almost all rooms are covered by one guards, see Figure A.1. Simplification of the
obstacle in the map ta is the main reason for the significant reduction of the number of
found guards, see Figure 4.14. Notice the guard in the left narrow polygon, almost at the

(a) k=0 cm (b) k=1 cm (c) k=5 cm

Figure 4.14: Found guards by the CPP, map ta, with unrestricted visibility range.

edge of the border, caused by an “improper” vertex that is closer than one centimeter to
4 In a preliminary study 50 solutions have been performed and compared with results from 20 solutions,

but differences are only minor.
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another map vertex. The guard is not needed for the filtered map. The map pb contains
almost only long corridors and reduction for smaller visibility ranges is not significant.
Examples of found solutions are shown in Figure A.2.

Required computational time

Required computational time linearly increases with the number of found guards as au-
thors discussed in [147], see Figure 4.15. The algorithm has been implemented in C++
and CGAL library version 3.3.1. Used geometric kernel has been Exact predicates exact -
constructions kernel with sqrt, which provides sufficient precision without significant com-
putational requirements. The program has been compiled by the G++ 4.2 with -O2 opti-
mization flag. Required computational time is in hundreds of milliseconds for less than
500 guards. The largest problem width 1852 guards has been solved in 3.3 seconds.
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Figure 4.15: Required computational time of the CPP algorithm.

4.4.2 RDS - Randomized Dual Sampling Algorithm

The RDS algorithm has only one specific parameter the number of random samples m.
The quality of found solution depends on m and one can expect less number of found
guards for higher m. The most suitable value of m is selected according to trade-off be-
tween quality of solution and required computational time. The RDS has been evaluated
for m ∈ {1, 5, 10, 25, 50, 75, 100}. The algorithm is not sensitive to the number of map
vertices, it only increases required computational time, therefore filtered maps for rele-
vance k=5 cm have been used. For each particular configuration (map, visibility range
and m) 20 solutions have been found and the average number of guards and the length of
the tour has been computed. The experimental setup has 168 unique configurations with
3 360 total number of found solutions. The quality of solutions according to the value ofm
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is compared as guards and length ratios, where reference values are for m=1, thus lower
value of the ratio means better solution.

Detail results are presented in Table A.3 and selected results in Figure A.3. The high-
est reduction of the number of guards and length of the tour is for unrestricted visibility
range. The reduction is not significant with decreasing visibility range. The most sensi-
tive map to the number of samples is the map jh. For the maps ta and pb the number of
guards is decreased with higher value ofm, but more samples does not significantly affect
the length of the tour. It is not necessary to used high number of samples for such type
of maps, because quality of solutions is not increased. Examples of found solutions are
presented in Figure 4.16.

(a) map jh, d=3 m, m=100 (b) map ta, d=10 m, m=25 (c) map pb, d=1 m, m=10, a tour over
found set of guards

Figure 4.16: Example of solutions found by the RDS algorithm for the visibility range d
and the number of random samples m.

To select a single value of m the overall average ratios can be handful, see Table 4.2.
Regarding the presented results parameter m=25 provides the best trade-off between the
solution quality and required computational time.

n Guards Ratio Length Ratio
1 1.00 1.00
5 0.88 0.95

10 0.87 0.94
25 0.87 0.93
50 0.87 0.93
75 0.88 0.93

100 0.89 0.93

Table 4.2: Overall ratios according to the number of random samples m.

Required Computational Time

First of all it must be noted that computational requirements are substantially affected
by particular implementations. However the worst case complexity of the algorithm is
used as a performance indicator, real computational requirements of operations with geo-
metric primitives depends on the used numeric precision model. Also the computational
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time is affected by the used compiler and runtime environment. The RDS algorithm has
been implemented in Java with geometric library JTS [8] and all operations have been
performed in the double IEEE 754 precision. The used java runtime machine has been
diablo-jdk1.6.0 [9]. The computational time has been measured within java runtime envi-
ronment.

The required computational time depends on the visibility range and particular map,
but it is always related to the total number of found guards, therefore the required com-
putational time is shown as histogram for selected sets of found guards in Figure 4.17.
The smallest problems are solved in tens or hundreds of milliseconds. The largest prob-
lem with 1291 guards is solved in 84 seconds for m=25, while it takes more than three
hundreds seconds for m=100.
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Figure 4.17: Required computational time of the RDS algorithm.

The used java runtime environment provides interesting observation. For each con-
figuration a batch of 20 iterations has been run in a single process execution. For lower
numbers of samples and high visibility ranges the first iteration has been more than three
times slower than others. This behaviour relates with the runtime optimization and has
been observed only for solutions found in hundreds of milliseconds. Beside the curiosity,
it also indicates potential issues in the comparison of the real computational times.

From the numerical stability point of view a great advantage of the RDS algorithm is
its incremental computation. If a polygonal operation like difference of new covered area
from the free space or an intersection of the visibility polygon with a disk fails due to
limited numeric precision, then new random point can be generated. The process can it-
erate until new random point allows correct execution of the operation. The total number
of recorded fails has been 3867, which represents 0.560 % of the total number of found
guards or 0.015 % of the total number of performed guards selections. The most problem-
atic map is the jh with 2120 fails. During solving problems in the map ta 1378 fails has
been recorded.
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4.4.3 BP - Boundary Placement Algorithm

The most important parameter of the BP algorithm is the boundary δB, and therefore the
performance of the BP algorithm is studied for various δB. Additional parameters are µI
and µE , which are used to select between the large and the small region cover strategies
in the interior and exterior parts of the algorithm. Both parameters have been set to the
same value 0.66.

The boundary δB is created from the shrunk free space W , and the distance of the
boundary from the obstacles is denoted as b - the boundary value. The value of b is se-
lected individually for each examined map, particularly the maps jh and pb are examined
with boundary values 1.0, 1.5 and 2.0 meters and the map ta with values 1.0, 2.0, 3.0, 3.5
and 4.0 meters. For each particular configuration 20 solutions are found and average val-
ues of quality metrics are determined, similarly to the examination of the RDS algorithm.
The selected results are presented in Figure A.4. The value of b affects the number of found
guards in each part of the BP algorithm, see Figure A.5. For small values and high visibil-
ity ranges almost whole free space is covered by the boundary guards. In contrary, high
values of b lead to very small shrunk free space and almost all free space have to be cov-
ered by guards inside the exterior. Examples of found solutions are shown in Figure 4.18.

(a) map jh, d=1 m, b=1 m (b) map ta, d=4 m, b=4 m (c) map pb, d=4 m, b=1 m

Figure 4.18: Example of solutions found by the BP algorithm for visibility range d and the
boundary value b, green lines represent the boundary; (a) 88 found guards in the map jh,
(b) found guards in the map ta, (c) found guards and the inspection path in the map pb.

An appropriate value of b should be set according to the environment and the visibility
range. The map jh is almost always covered by guards on the boundary (for b=1 m) or
guards found in the exterior part (for b=2 m). For environment with large free space, like
the map ta, the number of boundary guards and the interior and the exterior guards are
almost equal. The boundary part of the algorithm is mostly utilized for b=1 m, in other
cases most guards are found in the exterior. For higher visibility ranges it is better to
used boundary farther from the obstacles and for small visibility ranges the best is to use
boundary at the same distance as the visibility range. The boundary should sufficiently
describe the shape of the environment, but even with degenerated cased, like b=4 m for
the map ta, solutions found by the large and small region cover strategies are not worse
than 2% from the length of the tour point of view.

A selection of an appropriate b should also take into account the required computa-
tional time, and therefore the most computationally intensive part of the BP algorithm
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may be considered. The most time expensive procedure is the small region cover strategy,
which is mostly utilized in the exterior part. Particular spent time in each part of the BP
algorithm is shown in Figure A.6. Even in case that more than 80% of guards are found
at the boundary, more than 40% of computational time is spent in the exterior part. The
post-optimization procedure takes from 10% to 20% percents of the computational time.

The selected values of b are presented in Table 4.3. For small visibility range the bound-
ary is in one meter from obstacles for all used maps, while higher visibility ranges require
particular value of b for each map to obtain better results. These values do not provide the
smallest number of found guards, but they have been selected to minimize the number of
parameters and the length of the tour.

Map
Boundary Distance b [m]

Visibility Range ≤ 2 m Visibility Range > 2 m

jh 1.0 1.5
ta 1.0 3.0
pb 1.0 2.0

Table 4.3: Selected values for the boundary parameter b of the BP algorithm.

The efficiency of the post-optimization procedure to reduce the set of guards is demon-
strated in Figure 4.19, where selected overall ratios are visualized, the reference value is
particular quality metric before the reduction. The procedure decreases the number of
guards about ten percent, while the length of the tour is almost identical.

b=1 m b=2 m

Boundary Placement − optimization (part IV)

Boundary distance

R
at

io

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Boundary distance 1 m
Guards reduction
Length reduction

Boundary distance 2 m
Guards reduction
Length reduction

Figure 4.19: Quality of solution after
fourth part of the BP algorithm.
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Figure 4.20: Required computational time
of the BP algorithm.

Required Computational Time

The required computational time of the BP algorithm is mostly affected by the used ge-
ometric kernel of the CGAL library version 3.1. The covered free space is represented
as Planar Nef polyhedra, which support open and close boundary of particular poly-
gon. It allows determination of part of the boundary, which belongs to the border of the
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free space. Polygon operations are very slow, due to creation of new points as a result
of polygons difference, the precise rational representation (CGAL::Gmpz) leads to very
large values of nominator and denominator. The usage of selected precise geometric ker-
nel has been necessary, because it is required by the Nef polyhedra structures and also
less accurate kernels leads to topological assertions during polygonal operations.

To speed up the performance and to get particular solution in a reasonable time (less
than two hours) following trick has been applied. After several algorithm steps, current
polygonal representations have been rounded to decrease computational burden. The
rounding can lead to place points inside of obstacles, which is not allowed for compu-
tation of visibility, therefore the free space has been shrunk by a small value, at the begin-
ning of the computation. The algorithm covers this shrunk free space, while visibilities are
computed in the original (larger) map. The error of coverage is negligible and it can al-
ways be decreased by enlarging the map, because rounding is performed to one floating
point value, which represents units of centimeters. After applying this implementation
trick, the solution is found in tens of seconds for high visibility ranges and up to 110 min-
utes for the visibility range one meter and the map pb. The program has been compiled
by the G++ 3.4.6 with -O2 optimization flag. Required computational times are shown in
Figure 4.20. The presented required times does not include computation of the boundary.
The boundary is a shrunk free space and its creation requires tens of milliseconds, hence
it is negligible according to the required time of the BP algorithm.

4.4.4 Algorithm Comparison

Performance of all algorithms has been examined according to identified particular al-
gorithm settings. To provide the most suitable maps for each algorithm, the maps have
been modified as follows. To support rounding technique in the BP algorithm, free space
of each map has been shrunk by very small value (units of centimeters). Then the shrunk
free space has been filtered with k=5 cm to support the CPP algorithm. These filtered free
spaces represent maps to be covered by the all algorithms. The number of random sam-
ples m of the RDS algorithm has been set to 25 and the boundary values for the BP have
been selected according to Table 4.3. Similarly to the previous experiments 20 solutions
are found for each particular configuration and average values are determined. Ratios are
computed according to solution found by the CPP, the guards ratio is denoted as GR and
the length ratio as LR, and the sample standard deviations are denoted as sGR and sLR.
Overall results for all examined maps (jh, ta and pb) are shown in Table 4.4, detail results
are presented in Table A.4 and Figure A.7.

Both randomized algorithms (the RDS and the BP) outperforms the CPP in the number
of guards as well as in the length of the tour. Moreover the proposed BP algorithm pro-
vides superior results. The most significant improvements of solutions found by the BP
is for maps jh and ta. The proposed heuristic designed with consideration of consecutive
path planning leads to about twenty percents shorter tour.

The examination of the BP performance shows efficiency of the guards optimization
procedure, because the procedure can be used for any guards set, solutions of other al-
gorithms have been optimized. The overall comparison presented as ratios according to
the CPP algorithm is presented in Table 4.5 and Figure 4.21. The post-processed solutions
are denoted as CPP-opt and RDS-opt. The solutions of the BP algorithm without the opti-
mization is denoted as BP-nonopt.
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d RDS Algorithm
[m] GR LR sGR sLR

inf 0.38 0.76 0.05 0.05
10.0 0.49 0.85 0.08 0.07

5.0 0.61 0.89 0.13 0.11
4.0 0.65 0.89 0.15 0.11
3.0 0.67 0.91 0.09 0.05
2.0 0.75 0.93 0.04 0.03
1.5 0.72 0.88 0.03 0.04
1.0 0.70 0.85 0.01 0.04

BP Algorithm
GR LR sGR sLR

0.38 0.77 0.05 0.05
0.45 0.74 0.11 0.13
0.54 0.75 0.12 0.14
0.60 0.76 0.15 0.14
0.62 0.78 0.11 0.13
0.59 0.82 0.04 0.04
0.56 0.75 0.02 0.02
0.60 0.74 0.01 0.02

Table 4.4: Algorithms performance, relatively to the CPP.

Algorithm GR LR sLR sGR

CPP 1.00 1.00 0.00 0.00
RDS 0.62 0.87 0.08 0.15

BP 0.54 0.76 0.10 0.12

CPP-opt 0.74 0.91 0.04 0.03
RDS-opt 0.53 0.84 0.08 0.12

BP-nonopt 0.64 0.77 0.11 0.18
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Algorithms Comparison
relatively to CPP

Visibility Range [m]

R
at

io

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Guards ratio: CPP−opt

RDS−opt
BP

Length ratio: CPP−opt
RDS−opt
BP

Table 4.5: Overall performance. Figure 4.21: Algorithms comparison.

4.5 Discussion

Three algorithms to find a set of sensing locations with restricted visibility range have
been presented in this chapter. Each particular algorithm has been evaluated and the most
suitable parameters have been identified. The found parameters have been then used in
the overall comparison of the algorithms. The results indicate that the new proposed al-
gorithm called BP outperforms two other algorithms (the CPP and RDS) in quality of
solution point of view. Even though the decoupled approach of the inspection planning
is motivated by the high cost of sensing, the BP algorithm provides also shorter inspec-
tion paths, thus it can be eventually used for problems where the cost of sensing is not
significantly dominant over the cost of motion.

The presented experimental results provide particular suitable parameters for the CPP
and the RDS algorithm. Also the polygon filtering technique has been combined with the
CPP to increase the solution quality. Moreover the proposed post-optimization procedure
improves the solution quality found by the CPP and the RDS algorithms. The proposed
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combination of the polygon filtering technique and the optimization procedure signifi-
cantly improves solutions of the CPP algorithm. The CPP has the lowest computational
requirements and it does not suffer by numerical stability issues, hence it is suitable for
real-time applications, however the number of guards is higher.

From required computational time point of view the current implementation of the
BP algorithm is very poor. It is mainly due to used geometric representation. The most
time expensive part is the covering exterior in which possible best point to cover area is
determined by computation of visibility polygons. The used technique can be replaced by
more advanced search data structure like the shortest path map. In relation to the number
of random samples of the RDS it should be remarked that the BP algorithm uses only
one random sample, even though it can be easily extended to consider several samples.
Despite this “handicap” the quality of solutions found by the BP outperforms the RDS
even with higher number of samples.

The boundary of the BP algorithm greatly affects the algorithm performance, as it rep-
resents knowledge about the environment. The performance of the algorithm can be im-
proved by a more sophisticated structure for the boundary. Probably more suitable struc-
ture is the Visibility-Voronoi diagram [267] or the Saturated Generalized Voronoi Diagram
(SGVD) [127]. The advantage of the BP algorithm is its modularity to use any kind of
boundary to improve randomization process in the first sampling stage. In this sense, it
allows to use knowledge about environment in a geometrical form.

The incident constraint has not been considered. The BP algorithm can deal with addi-
tional visibility constraints, because it use similar sampling strategy like the RDS. Consid-
eration of additional constraints is the main advantage of the sampling based algorithms.

The valuable result is a learned lesson during experimental verification of the algo-
rithms and experimental application in the PeLoTe project. The numerical issues are crit-
ical for real applicability of the algorithm in the complex system for several robots. The
real experiments also provide feedback from the real users about performance of the al-
gorithm, a solution should be provided in less than several seconds and solution found in
five seconds has been considered as slow and annoying. The inspection task, that is plan-
ning paths to search a building, is executed by the mission coordinator in a search and
rescue mission to provide an allocation of particular rescuers and robots, hence it is pre-
ferred to deliver an approximate solution in required time, instead of optimal (or better)
solution later.
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Chapter 5

Multi-Goal Path Planning for a
Group of Cooperating Robots

This chapter is dedicated to the multi-goal path planning problem that deals with finding
a collision-free path to visit a set of locations in the robot workspace. Paths between goals
are assumed to be known and the planning problem is considered as the Traveling Sales-
man Problem (TSP) and the problem of planning for a group of cooperating mobile robots
as the Multiple Traveling Salesmen Problem (MTSP). In the context of the inspection task,
goals can be sensing locations found by a sensor placement algorithm from the previous
chapter, thus in order to accomplish the inspection task all found sensing locations have
to be visited. The total mission time is important in a search and rescue scenario, thus
the MinMax variant of the MTSP is preferred. To follow the TSP notation goals (sensing
locations) to be visited are also called cities in this thesis.

The TSP can be formulated on a graph, in which traveling cost between two cities is
considered, thus cities can be connected by an arbitrary path. The only assumption of the
path is that it must be feasible for particular mobile robot. The shortest-path roadmap
provides the most intuitive cost, the shortest distance between cities. Such cost can rep-
resent lower bound of time to travel, however from motion planning (or motion control
point) of view, the time to travel depends on the robot kinematic and dynamic constraints.
In the decoupled approach of the inspection planning, the AGP part minimizes the cost
of sensing, while the TSP part minimizes the cost of motion. Moreover in the case of the
MTSP, particular sensing locations are assigned to each robot in order to their coopera-
tive behaviour. The sensing locations are found with the assumption of discrete sensing
(visibility), it means the robot is stopped or its movement is very slow for precise mea-
surement at the location. The assumptions considered in the previous chapter have to
be also considered in this chapter, otherwise feasibility of the found inspection plan can-
not be guaranteed. Particularly the robot has differential nonholonomic drive and can be
represented by a disk in a polygonal domain, which practical means a point robot in the
shrunk free space.

The chapter is organized as follows. At first, related work with focus to selected ap-
proach to solve the TSP and the MTSP with MinMax criterion are presented in the next
section. The main selected method to solve the TSP is based on the Self-Organizing Map
(SOM) that is extended to an environment with obstacles. Two such approaches are pre-
sented in Section 5.2 together with two additional modifications. An approach based on
application of SOM on a graph is presented in Section 5.3. Two variants of the multi-goal
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path planning problem in the context of the inspection task in a search and rescue mission
are discussed in Section 5.5. Experimental results are presented in Section 5.6 and finally
the chapter is concluded by a discussion about proposed approaches, Section 5.7.

5.1 Related Work

The TSP and MTSP are known to be NP-hard and several exact and heuristic algorithms
have been proposed during several decades of studying these problems. In addition to
combinatorial approaches and integer programming formulations, soft-computing tech-
niques like neural networks, genetic algorithms, simulating annealing or ant colony op-
timization have been successfully applied to these problems. An overview of approaches
and variants of problem formulations is already presented in Section 2.4, thus this section
is focused on particular selected approaches to address the MTSP with MinMax criterion
in the context of cooperative multi-goal path planning. One of them is the heuristic al-
gorithm called GENIUS [98]. The second one is the self-organizing map (SOM) approach
that has been successfully applied to the MTSP-MinMax by Somhom and et. in [243].

SOM is particularly interesting, because it does not use direct graph representation of
the problem like combinatorial approaches. Weights of the neuron connections represent
coordinates of nodes, that are adapted to coordinates of presented cities during learning
phase. Nodes can be viewed as points moving in the environment and path is formed by
connections of these nodes. The inspection task belongs to the hybrid-visibility domain,
and nodes are moved inside the environment. Thus, an idea about connection between
the continuous space of the inspected environment and the discretized solution of the
AGP come out. Possible consideration of environment during solution of the TSP is the
main reason why self-organizing neural networks have been studied and why it forms
the main approach to solve the multi-goal path planning problem in this thesis.

Beside the motivation above, soft-computing techniques for the MTSP-MinMax, in-
cluding SOM, have been studied in [159, 157]. Based on this preliminary comparison,
SOM has been selected as the most promising approach. Although other soft-computing
techniques provided better quality of solution (about units of percents), their real compu-
tational requirements were worse than for the SOM approach, despite the fact that SOM
has been used in a naı̈ve form, which is unsuitable for its application in the motivation
problem.

The studied algorithms provide approximate solutions of the MTSP-MinMax. The qual-
ity of a solution can be worse due to proposed modifications of the SOM procedure that
decrease the computational requirements in the related path planning problem. Thus, the
exact or high quality reference solutions obtained by another approach can be beneficial
to examine efficiency of the proposed modifications. The exact solution is too computa-
tionally demanding, therefore GENIUS has been chosen to provide reference solution of
the MTSP-MinMax. A brief description of this algorithm is presented in Section 5.1.1.

Several ideas how to improve SOM for the TSP have been published. These ideas ad-
dress issues of the SOM approach and can be particularly useful in the MTSP-MinMax,
because the SOM community seems to be focused on the TSP and only the approach [243]
has been found for the MTSP-MinMax variant. This fact together with the motivation of
better understanding of the SOM approach are reasons why several paragraphs are ded-
icated to describe several SOM variants in Section 5.1.2. Besides, the description of SOM
introduces reader to the terminology used.
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5.1.1 GENIUS

The GENIUS algorithm is based on two heuristics: GENI (Generalized Insertion) and US
(Unstringing and Stringing). It represents general heuristic and it has been used to find a
solution of the MTSP-MinMax in [98]. The first heuristic is a construction method while
the second heuristic is an optimization method. Tours are initially constructed by GENI.
After that, the Tabu Search technique is used to exchange cities from one tour to another,
while GENI is utilized for vertices insertion/removing. Finally, the US optimization pro-
cedure is applied. It removes a vertex from the tour and inserts the vertex into the same
tour by the GENI algorithm. The procedure is repeated until a vertex re-insertion does
not improve the quality of solution.

A parameter p of the GENI algorithm defines size of the neighbourhood that is used to
select the best possible vertex insertion. Performance of the tabu search can be controlled
by three additional parameters: q,Θ and Tmax. The q parameter determines size of the
global neighbourhood to select an appropriate tour for a vertex exchange, Θ controls the
number of iterations for which a move of vertex according to particular tour is declared
tabu. The maximal number of allowed iterations without improvement is defined by the
Tmax parameter.

p . . . . . . 5
q . . . . . . 5

Tmax . . . . . . 10

(a) GENIUS-fast

p . . . . . . 14
q . . . . . . 5

Tmax . . . . . . 100

(b) GENIUS-quality

Table 5.1: Parameters of the GENIUS heuristic algorithm for the MTSP-MinMax.

Recommended values of parameters have been suggested by authors [98] and they
have been also verified in [262]. Two sets of parameters are shown in Table 5.1, the first
set can be called fast, because it provides a good trade-off between speed of the algorithm
and quality of solution. The second set provides high quality solutions, but it is computa-
tionally demanding, the set of parameters is denoted as quality set in this thesis or as the
GENIUS-quality algorithm variant. For each operation stored in the tabu list the value of
Θ is selected randomly from the interval 〈7, 27〉.

5.1.2 Self-Organizing Neural Network - SOM

The self-organizing neural network (also called Self-Organizing Map - SOM) has been se-
lect as the main technique to solve the path planning problem for a group of cooperating
robots in the inspection task scenario. The main motivation of the selection has already
been presented in paragraphs above, however several notes should be made in relation
of the TSP and the algorithm performance. The performance of a SOM based TSP solver
is poor in comparison with the classical heuristic approach, which is mention in almost
every paper presenting a new SOM variant for the TSP. Authors of [56] suggested that his-
tory of heuristic approaches is more than five decades while neural network, in particular
SOM, approaches have only about twenty years history and produce interesting results.
Also it should be noted that one of the most powerful heuristic called Lin-Kernighan has
been proposed in 1973 [182], but an efficient implementation has been proposed relatively
recently by Keld Helsgaun in 2000 [118]. This observation can be motivation to not be so
pessimistic to the SOM approaches, but the main motivations of SOM are its interesting
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features. At first the SOM provides solution of the TSP, which is directly interpretable as
a geometrical structure and the adaptation can be viewed as an exploration of the envi-
ronment. This behaviour motivates to think about the solution of the Watchman Route
Problem, which is also formulation of the inspection task suitable for continuous sensing
model1. In addition, self-organizing neural networks are successfully used in various do-
mains [216, 241], despite the fact the convergence guarantee is still under investigation,
which is one of the possible issues discussed in the following sub-sections.

This section is organized as follows. The next paragraph introduces the SOM approach
to the TSP and it also introduces the reader to the basic terminology. Then, an overview
of SOM variants for the TSP are presented and finally SOM for the MTSP with MinMax
criterion is described. The presented self-organizing schema is used in the new proposed
algorithms to solve the cooperative multi-goal path planning or more specifically the co-
operative inspection task problem, as a solution of the MTSP-MinMax for environments
represented by a polygonal domain.

Traveling Salesman Problem

A structure of the self-organizing neural network for the TSP is a two-layered competitive
learning network [242]. It contains two dimensional input vectors and an array of output
units. An association between the learning network and a geometrical representation of
the solution is shown in Figure 5.1. An input vector i represents coordinates (ci1, ci2) of the
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Figure 5.1: Schema of the two-layered neural network and associated geometric represen-
tation.

city ci and weights νj1, νj2 can be interpreted as coordinates of the node νj . The network is
initialized with small random connection weights and cities are then sequentially applied
to the network in a random order. The output nodes compete to be the winner for a given
city. The weight vectors of the winner node and its neighbouring nodes are updated in
order to get closer to the city according to the neighbouring function f . A basic schema of
the self-organizing adaptation procedure for the TSP is shown in Algorithm 4.

Cities are presented to the network in a random order until the Euclidean distance of
each winner node to the particular city is less than given δ. The winner node is the closest

1In fact, the SOM approach for the Watchman Route Problem is presented in the following chapter, but
the first step has been an extension of the SOM to a polygonal domain, which is presented in this chapter.
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Algorithm 4: TSP - a basic schema of the self-organizing approach
Input: C = {c1, . . . , cn} - set of cities
Input: δ - maximal allowable error
Output: (ν1, . . . , νM ) - sequence of node weights representing city tour.

initialization(ν1, . . . , νM ) // set weights of neurons

i← 0 // reset the adaptation step counter

repeat
error ← 0 // clear error for new adaptation step

Π(C)← create a random permutation of cities
foreach c ∈ Π(C) do

ν? ← select winner node to the city c
error ← max{error, |ν?, c|}
adapt(ν?, c) // move the winner node and its neighbours towards c

i← i+ 1 // increment the adaptation step counter

until error ≤ δ

node according to distance to the city. The adaptation function adaptmoves winner node
and its neighbouring nodes towards the presenting city ci by a equation

ν ′j = νj + µf(.)(ci − νj), (5.1)

where µ is the fractional learning rate. The neighbouring function f(.) must possess two
important characteristics: it should decrease for farther neighbours and its pervasiveness
should decrease during adaptation [243]. An example of the ring adaptation process is
shown in Figure 5.2.

(a) step 27 (b) step 36 (c) step 45

(d) step 51 (e) step 63 (f) step 72

Figure 5.2: Performance of the SOM procedure for the TSP berlin52 from the TSPLIB [221].

An important property of an algorithm is ability to provide a feasible solution even if
the convergence condition fail. This can be guaranteed by the inhibition mechanism [242].
It was introduced to improve the convergency, but it also provides a solution of the TSP
at the end of each adaptation step. During one complete presentation of all cities to the
network (one adaptation step), the winner nodes are marked as inhibited and winner
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nodes are selected only from non-inhibited nodes. The inhibition mark is cleared before
new adaptation step. By this mechanism all cities have associated distinct winner nodes
and a tour can be constructed by traversing the ring of nodes. The exact length of the tour
is then found as the sum of city–city lengths.

Overview of SOM variants

One of the earliest usage of the Kohonen-type network (SOM) to solve the TSP was pro-
posed by Angéniol et. al. in 1988 [14]. The approach follows constructive heuristic and
starts with one node. A node is duplicated if it is the winner for two different cities and it
is deleted if it is not selected as winner for three complete presentations of cities. Growing
of the ring structure has been also used in the FLEXMAP proposed in 1991 [100], however
the deletion mechanism has been omitted. The maximal number of required nodes has
been close to 2.5n, where n is the number of cities, up to problem size with 2392 cities. On
the other hand, Budinich used the same number of nodes as cities and the inhibition is re-
placed by a real value derived from the winner node and its neighbouring nodes [39, 40].
The tour is constructed from the ordered sequence of cities according to the value.

An inhibition of nodes that are winners too often has been used in the Guilty net al-
gorithm [44]. The inhibition mechanism was substituted by the vigilance parameters in
the Vigilant Net [42] where initialization of the weights is discussed. Superior results are
reported for starting positions of nodes as the convex hull approximation of the cities.
Aras used geometrical properties of the ring and a topology of cities in his KNIES algo-
rithm [19]. The algorithm uses regular adaptation of the winner node, which is moved
towards the city. In addition, nodes that are not in the activation bubble (set of neighbour-
ing nodes), which are not moved closer to the city, are moved in such a way that global
statistical properties of the data points are preserved. These movements are called a dis-
persing phase. The proposed algorithm, called KNIES DECOMPOSE has been used to
solve large TSP instances by the decomposition of the problem into several clusters [20].
The algorithm performs in five steps. After the problem is partitioned into clusters, an or-
der to visit the clusters is determined and entering and leaving cities for each cluster are
found. An approximation of the Hamiltonian path problem in each cluster is found and
finally paths are joined. The large scale problems have also been addressed in [261]. The
SOM approach has been combined with the Adaptive Resonace Theory and a solution
has been obtained for a problem with about fourteen thousands cities.

The presented brief overview of the SOM techniques for the TSP shows three main
directions how SOM can be improved:

• efficient adaptation process,
• initialization of the weights, which should be related to the geometric structure of

the Euclidean TSP,
• combination with other approaches.

Approaches concerning these directions are briefly described in the following paragraphs.

Probably the most complex SOM algorithm for the TSP is the Co-Adaptive net intro-
duced in [56]. The algorithm uses higher number of nodes than the number of cities and it
utilizes the adaptive node neighbourhood that is updated after each adaptation step. The
learning process is divided into competition and co-operation phases. The co-operation
phase is based on not moving of winner nodes or their neighbours more than once. The
algorithm also uses the near-tour to tour construction, which creates a complete tour if the
current winner nodes are not distinct. The best tour is kept during the adaptation and it is
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used if the final found solution is worse. Authors presented huge set of results and com-
parison with other approaches and they reported that their approach outperforms other
variants and together with [242] provides better results than Aras’s KNIES [19], which use
the statistical properties of the data points.

Even though the statistical approach (KNIES) has been outperformed, the convex hull
property has been studied in the expanding SOM variant called ESOM [135, 181]. To
follow the convex hull property and to design an appropriate learning rule, which will
consider the global parameters of the problem, the Intergrated SOM (ISOM) uses an evo-
lutionary principle and combines SOM with a genetic algorithm [136, 137]. The convex
hull property is also studied in [277], authors used more conservative learning rule than
ESOM: a movement of the nodes, which follows the expansion to preserve convex hull
property, is restricted. The algorithm provides almost identical results as ESOM, but the
learning rule is much simpler.

SOM has also been combined with two heuristics in [214]. The first one is called regen-
eration and it is a create-and-delete process. The deleted node is the worst node according
to two parameters F and K, which are updated during adaptation. The F parameter is
increased, when a winner node is already assigned to other city and decreased in other
cases. The K parameter is increased by any competition involving a new target and it is
decreased if a node is assigned to the city. The second heuristic is called competition strat-
egy and it considers a segment of the ring during the computation of the nearest node to
the city and creation of a new node. The proposed SOM algorithm has been use to plan
trajectories for the two arms fruit-harvesting robot [215], the planning problem has been
formulated as the double traveling salesmen problem.

Another studied research direction is setting of adaptation parameters: the learning
rate α and the neighbouring function variance G, which is also called the gain parameter.
The SETSP algorithm proposed in [260] uses different functions for α andG. The proposed
algorithm is compared with the Guilty Net, Angéniol’s approach and Aras’s KNIES algo-
rithms. Presented results of the proposed functions outperform all compared algorithms.
Another functions have been proposed in [283] and in [26], where authors discussed in-
fluence of an initial structure of the ring [282]. Murakoshi and Sato proposed individual
neighbouring functions for each node in the neighbourhood of the winner node in their
multiple scale neighbourhood functions approach [199].

The SOM approach is still not competitive with classical approaches to the TSP, how-
ever many proposed approaches improve its performance. The aforementioned approaches
demonstrate active research on this topic and for a comprehensive overview of previ-
ous results see [240, 56]. An overview of the recent results are well described in the new
memetic neural network approach [63, 64].

To concluded overview of SOM approaches an important aspect of the related work
have to be mentioned. Almost all published papers about the SOM variant for the TSP
includes experimental results only for the Euclidean variant of the TSP, in which cities
are placed in a plane and distances satisfy the triangle inequality. In the context of the
path planning, such algorithms can be used only for environments without obstacles that
means they are not practical for mobile robotics. Obstacles add difficulties to the adap-
tation process, because the distance between a node and presented city have to be com-
puted with respect to obstacles, which can be computationally demanding. This issue is
addressed in Section 5.2, where an exact approach based on the shortest path map is de-
scribed, and an approximate solution of the shortest path problem in the context of the
SOM adaptation procedure is introduced. Only one approach that deals with obstacles
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has been found in literature: an adaptation rule for the TSP problem on a graph is pre-
sented in [274]. The approach is discussed in Section 5.3.

Multiple Traveling Salesmen Problem

An individual ring of nodes is created for each salesman in the MTSP. All tours start and
end at the same city called depot. The adaptation process must ensure that all tours are
connected with the depot, therefore an individual adaptation of the winner node from
each ring to the depot is necessary. A schema of the adaptation procedure with the inhi-
bition mechanism is depicted in Algorithm 5.

Algorithm 5: MTSP - self-organizing approach
Input: C = {cd, c2, c3, . . . , cn} - set of cities, where cd is the depot
Input: m - number of salesmen
Input: (d,G, µ, α) - parameters of the self-organizing neural network
Input: δ - maximal allowable error
R← {r1, . . . , rm|ri = ring(cd)} // initialization of rings of nodes

i← 0 // reset the adaptation step counter

repeat
error ← 0 // reset error for the current adaptation step

I ← ∅ // set of inhibited nodes

foreach r ∈ R do
ν? ← select winner node from the ring r to the city cd, ν? /∈ I
error ← max{error, |ν?, cd|}
adapt(ν?, cd) // move ν? and its neighbours towards cd
I ← I ∪ {ν?} // inhibit the winner node

foreach c ∈ Π(C \ {cd}) do // Π(C) is a random permutation of cities
ν? ← select winner node to the city c, ν? /∈ I
error ← max{error, |ν?, c|}
adapt(ν?, c) // move ν? and its neighbours towards c

I ← I ∪ {ν?} // inhibit the winner node

G← (1− α)G // decrease the gain parameter

i← i+ 1 // increment the adaptation step counter

until error ≤ δ

Authors of [243] proposed a competitive rule for the MinMax criterion. The rule prefers
nodes from shorter rings:

ν? = argminν |c, ν| ·
(

1 +
distν − avg

avg

)
, (5.2)

where |.| denotes the Euclidean distance between the city c and the node ν, distν is the
length of the ring into which the node ν belongs, and avg is the average length of the
rings. The authors also recommend following neighbouring function

f(G, d) =

{
e−

d2

G2 d < 0.2M,
0 otherwise,

(5.3)

where G is the gain parameter, d is the cardinal distance measured along the ring and M
is the number of nodes in each ring. The gain G is decreased after each complete presen-
tation of the cities to the network according to the gain decreasing rate α. An appropriate
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initial value of G depends on the problem size and authors experimentally found the lin-
ear relation G0 = 0.06 + 12.41n. Recommend values of learning and decreasing rates are
µ = 0.6 and α = 0.1.

The algorithm performance for the Euclidean MTSP-MinMax is shown in Figure 5.3.

(a) step 36 (b) step 41 (c) step 45

(d) step 51 (e) step 63 (f) step 74

Figure 5.3: Performance of the SOM algorithm for the MTSP-MinMax without obstacles.

The presented self-organizing procedure together with recommended values of its pa-
rameters is the main SOM schema used in this thesis for the multi-goal path planning for a
group of cooperating robots. The particular parameters are summarized in Table 5.2. The
required cooperation is represented by the MinMax criterion, which leads to distribute
movements among robots in order to minimize the total mission time. The selected ap-
proach is able to provide a solution for problems with hundreds of cities, which is suffi-
cient for the inspection task (according to the results presented in the previous chapter),
however other SOM approaches have been applied for larger problems.

Parameter Description

M = 2.5·n
m the number of neurons in the each ring

G0 = 12.41 · n+ 0.06 the initial value of the gain parameter
d = 0.2·M the parameter of the neighbouring function
µ = 0.6 the learning rate
α = 0.1 the decreasing rate
δ = 0.001 the minimal required distance of the winner from the city

Table 5.2: Parameters of the SOM algorithm for the MTSP, where n is the number of cities
and m is the number of salesmen.
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Convergence of SOM

The following paragraphs are dedicated to discussion about convergence of the SOM ap-
proach. Mainly to note related aspects and also to provide a different point of view to the
SOM adaptation instead of the geometrical interpretation, which is the motivation of the
proposed SOM based algorithms in this thesis.

In [60], authors presented review of the convergence results. A generalization of the
SOM competitive learning can be considered as a vectorial quantization algorithm. Au-
thors discussed measures of the self-organization and for the discrete case they cited Rit-
ter’s work on potential Vn(m) as the true measure of the self-organization. The algorithm
can be viewed as an approximation of the stochastic gradient algorithm derived from
the function Vn(m). It is noted that many applications of the SOM algorithm are based
on non-singular gradient of Vn(m), which correspond to the Kohonen algorithm, and a
singular part, which prevents the algorithm from being gradient descent.

The most studied convergence properties are for the one dimensional case. The conver-
gence proof is based on the Markov chain technique. Sadeghi presented study of multidi-
mensional Kohonen algorithm in [223]. He used the fact that in each step of the learning
phase the only needed information are those of the last step, which is the Markov process
consideration. A constant learning rate is assumed to use results from the homogeneous
Markov chains. It is shown that Deoblins’s condition is valid for the multidimensional
Kohonen algorithm considered as Markov process evolved in a topological space.

More recent overview of neural networks properties can be found in [116] where con-
vergence results and the topology preservation are discussed. Mathematical exact defi-
nition of the topology preservation (topographic) mapping from an input space V to an
index set A of reference vectors W is given by the same authors. They noted that topo-
graphic product and its derivatives seem to be the best tools for practical use, although
they are not based on the mathematical exact definition.

SOM in the Multi-Goal Path Planning

However the convergence property is desired, with respect to applications of the mobile
robotics an approximate solution may be sufficient, e.g. an approximation that is found
after finite number of adaptation steps. Mainly due to the following aspects. The planned
path is found in a model of the environment, which can be almost every time somehow
modified or it can contain dynamic objects, that are not considered during planning. Paths
can be replanned according to new information about the environment. In real applica-
tion, it is also required to have a solution at requested time, rather than to have better or
optimal solution later. From this perspective, the planned paths can be viewed as guide-
lines, in which directions each robot should travel instead of the exact “optimal” plan. To
avoid the critique be too skeptical, it is clear that more accurate approximation provides
more valuable solution.
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5.2 Solving MTSP by SOM in a Polygonal Domain

The multi-goal path planning is the second part of the decoupled approach of the inspec-
tion task. Cities in the MTSP are sensing locations found in a polygonal domain, thus
paths between cities must by traversable by a mobile robot and have to navigate the robot
among obstacles. The shortest path among obstacles can be called Euclidean geodesic [48]
or the geodesic path [145]. Similarly to the sensor placement, a polygonal map may be ex-
panded by a disk representing the robot size. All cities have to be inside the free space
reachable by the robot and without lost of generality only one connected component can
be assumed2. The polygon filter technique based on relevance measure, Section 4.2.2, may
be used to remove unnecessary vertices of polygonal representation of the environment.
Fast computation of the shortest path is crucial for a reasonable required computational
time of the SOM adaptation. The path (distance) queries are used in two situations.

1. Determination of a (shortest) distance (path) between a node and the city is a part
of the winner selection process. The path is also utilized while a node is moved
towards the city in the adaptation part, i.e. new node’ position (weights) is on the
path closer to the city according to the neighbouring function.

2. Determination of a (shortest) path between two nodes is used in the computation of
the length of the ring. The length is used as a weight of the node–city distance in the
competitive rule for the MTSP-MinMax.

The naı̈ve approach of finding the shortest node–city path may be based on compu-
tation of the visibility graph that can be found in O(n log n), where n is the number of
polygon vertices. The shortest path can be then found in the graph by Dijkstra’s algo-
rithm in O(|e|+ n log n), where e is the number of edges of the full visibility graph.

The computation of the visibility graph and the shortest path can be supported by an
underlying triangulation of the polygonal environment. Then, the shortest path can be
found in O(h2 log n + T ), where h is the number of obstacles, n is the number of vertices
and T is the time to find the supporting triangulation [222]. The shortest path can also
be found by the wavefront propagation based on the continuous Dijkstra paradigm [194].
The propagation can be used to create supporting structure for the shortest path queries
with respect to city, the structure is called Shortest Path Map (SPM). The SPM in the SOM
based MTSP algorithm has been introduced in [161].

The SPM supports point–city queries, but it cannot be directly used for node–node
queries, that is why other approaches have been investigated. Another reason is related
to the numerical stability and complexity of several SPMs in the case of large TSP. Issues of
the SPM approach are discussed in the next section and an approach based on approxima-
tion of the shortest path is presented in Section 5.2.2. Determination of length of the ring
is discussed in Section 5.2.4 and an alternative stop condition of the adaptation procedure
is presented in Section 5.2.5.

5.2.1 Shortest Path Maps Approach

The SPM is a planar division of the free space with respect to a point, which allows deter-
mination of the length of the shortest path to the point in time O(log n) and the shortest

2The case with several connected components can occur if size of the robot is large and a sensing location
is placed inside an unreachable part of the environment, after obstacles expansion by the radius of the robot.
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path in time O(log n + k), where n is the number of vertices representing polygonal ob-
stacles and k is the number of bends in the path [195]. An example of the SPM is shown
in Figure 5.4. The SPM supports node–city query and for a given polygonal domain W

Figure 5.4: An example of the SPM, the blue rectangle represents one of the cell of the SPM
division, and shortest paths from the cell to the point (cross) follow the orange path.

with v vertices, n cities, N neurons and d neighbouring neurons it can be used as follows.
For each city ci the SPM(ci) can be found inO(nv log v) [119]. To determine a distance be-
tween a node ν and ci a particular cell of the SPM(ci) have to be found for ν inO(log v) by
a point-location algorithm or in the average complexity O(1) by the Bucket method [80].
A node ν is moved towards the city ci along the shortest path inO(k), where k is the num-
ber of path vertices, the cell (path) is already found in the distance query. The complexity
of one adaptation step depends on a winner selection and movements of the winner and
its neighbouring nodes towards the city. The winner node is found in O(Nn log v) and
movements of nodes can be bounded by O(ndv). The number of neurons is derived from
the number of cities, e.g.N = 2.5n, thus the overall complexity of one adaptation step can
be bounded by O(n2 log v + ndv).

An overlay of SPM divisions (for all cities) can be used to avoid necessity of determi-
nation of the node cell for each city presentation. If a node is moved in such polygonal
division, the cell can be determined during the node movement along the shortest path to
the city, by similar procedure to the visibility walk in a triangulation [72]. The principle is
illustrated in Figure 5.5, where an overlay of two SPMs for cities c1 and c2 are shown. A

c1

(a) SPM for the city c1

c2

(b) SPM for the city c2

C1

c1

c2

C2

2

1

’
ν

ν

’

v

v

(c) overlay of SPMs

Figure 5.5: A neuron ν adaptation to the city c2 and its movement in polygonal division.

node ν is in the cellC1 and it is moved towards c2 over polygon vertex v1. The node passes
edge of the cell during its movement, therefore a cell C2 may be determined. The cell C2

has associated the shortest path to c2 over v1 and to city c1 over v2. A location of ν ′ after its
movement can be considered to express complexity of the adaptation step. At first, ver-
tices between which ν ′ is placed are determined inO(v), then a cell is determined inO(pc),
where pc is the number of cells between two vertices. The complexity of the node moving
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process can be bounded by O(v + pc) or by O(log v + log pc) if distances between path
vertices and edges of the passed cells are precomputed. The complexity of the adaptation
step for an overlay of SPMs can be bounded by O(nd(v + pc)) or O(nd(log v + log pc)).

One division seems to be more suitable for the node–city queries than an individual
SPMs, however it cannot be simple stated that one overall division is better, because ro-
bustness should be also taken into account. A polygonal division found as the SPM for a
polygonal map of the environment with presence of obstacles contains so-called Steiner
points. The number of these new points depends on the number of reflex vertices of the
map and it dramatically increases after two wavelets are merged [195]. The number of
such points is even greater for an overlay of SPMs. From the numerical issues point of
view, such a division contains many very narrow neighbouring cells, see Figure 5.6 for an
example. An additional issue of the SPM approach relates with the required memory to

Figure 5.6: An example of SPM division overlay.

store the supporting structures. The memory requirements increases with number of cities
and with the number of map vertices. Regarding the results in Chapter 4, the number of
cities in the inspection task can be several hundreds for typical indoor environments and
small visibility ranges. The same number of SPMs have to be created and after that, an
overlay can be eventually computed.

Despite the mentioned issues the individual SPMs approach has been used in a search
and rescue scenario [160, 161] for problems with less than one hundred cities.

5.2.2 Approximate Solution of the Shortest Path Query

An evolution of the ring during the adaptation process can be viewed as an exploration
of the problem topology, see Figure 5.3. In early adaptation steps, nodes travel across the
problem domain, while in final stages, due to lower value of the gain G, weights (nodes)
changes are very small. This observation leads to expect that a rough approximation of
the shortest path in early stages should be sufficient, because position of a node is dra-
matically changed during its movement. An approximation can also be useful to support
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the node–node path queries required in the MTSP-MinMax variant to determine lengths
of the rings. On the other hand, winner nodes are very close to cities in final adaptation
steps. The motivation to use an approximation of the shortest path is a reduction of the
required computational time of a TSP solution, and of course elimination of necessity of
constructing complex supporting structures like the SPM. The application of the shortest
path approximation is not new and it is investigated in the finding approximate geodesic
path for complex 3-d shapes represented as triangular meshes [247, 253].

An approximation of the shortest path can be based on a convex polygon partition
of the free space. A convex partition can be found in O(v log v), where v is the number
of polygon vertices [233]. An advantage of the convex cells is that the shortest distance
between a node inside a cell and a vertex of the cell is the Euclidean distance. A node is
always placed in the free space, therefore it is always placed in some cell of the partition.
An approximation of the shortest path between a node and the city can be found as the
shortest path over a vertex of the cell.

More formally, assume a polygonal workspaceW with v vertices and let P is a convex
polygon partition of W into convex cells, P = {C1, C2, . . . , Ck}, where each cell Ci is
represented as a sequence of polygon vertices, and a node ν is in the cell Cν . The path
from ν to the city c is found as the shortest path S(w, c) over vertex w of Cν to c such that

w = argminwi∈Cν |ν, wi|+ |S(wi, c)|, (5.4)

where |.| denotes the Euclidean distance between two points and the length of the shortest
path between two vertices, resp. vertex and city. An example of the approximate shortest
path is depicted in Figure 5.7.

node

city

(a)

city

node

(b)

Figure 5.7: An approximation of the shortest path and incident diagonals.

All shortest paths from vertices to cities can be found in the visibility graph by Di-
jkstra’s algorithm in O(n(v + n) log(v + n)), where n is the number of cities and v is
the number of vertices. The graph can be found in O((v + n)2) by the algorithm [210].
A point-location algorithm can be used to find Cν in O(log v). Similarly to the SPM ap-
proach the cell after node movement can be determined by the same walking technique,
but the number of passed cells is expected to be lower. A node always pass diagonals
during the movement, because the node is moved from a vertex to the city along edges of
the visibility graph, thus the diagonals passed by the shortest path can be precomputed.
The complexity of the path determination depends only on the number of cells vertices
and the adaptation of node depends only on the number of vertices, i.e. the number of
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passed diagonals. The number of cells does not depend on cities, because convex polygon
partition is a property ofW .

A precision of the proposed approximation depends on the size of convex polygons
and can be insufficient for an arbitrary point. One of the key aspect of the proposed ap-
proximation is the adaptation process. Nodes are attracted to cities during the adapta-
tion and the winners are almost at the same places as the cities in the final adaptation
steps. In these situations, the city is typically directly visible from the winner node and
the Euclidean distance can be used. A refinement of the path based on this observation is
described in the next section.

5.2.3 Refinement of the Approximation of the Shortest Path

The proposed approximation of the shortest path can be extended to provide shorter path
or in several cases the exact solution. The shortest path is provided if a city and a node are
in the same cell. Also the solution is exact if the node is at the shortest path from a vertex
to the city. In other cases, an additional path refinement may be based on a test of direct
visibility between the node and a vertex of the primal (rough) path.

Assume a node ν inside the cell Cν and an approximation of the shortest path from ν
to the vertex vk as a sequence of vertices (v0, v1, . . . , vk), v0 ∈ Cν . A refinement is an exam-
ination of direct visibility test between ν and vi. The refinement procedure is depicted in
Algorithm 6. The visibility test is similar to the method described in [143], which is based

Algorithm 6: Refinement of the Approximate Shortest Path
Input: ν - node, which is inside cell Cν
Input: (v0, v1, . . . , vk) - an approximation of the shortest path from ν to vk, v0 ∈ Cν
Output: (vi, vi+1 . . . , vk) - a refined path, i ≥ 0

i← 0
while visible(ν, vi+1) ∧ i < k do

i← i+ 1

on the straight walk in a triangulation [72], instead of triangulation the convex partition
is used. If a straight line from ν to the vertex vk cross only diagonals or entirely lies in the
same cell then the vertex vk is visible and all vertices vi for i < k can be removed from
the sequence. Examples of refined path are shown in Figure 5.8, the differences between
paths are less than 0.3%.

The complexity of the path refinement depends in the worst case on the number of ver-
tices and it can be even worse than a construction of the SPM, however the real required
computational time is expected to be lower. For example nodes are very close to cities in
final adaptation steps, hence the node is in the same cell as the city or it is just in the next
cell and only one direct visibility test should be sufficient. Also if a node and the city is
not directly visible, after the node is moved towards the city along the found path, the
city becomes visible and the path refinement provides the shortest path, see Figure 5.9.

The discussed examples are motivation to study the proposed approximation and path
refinement in the context of the inspection task, where cities are not placed arbitrarily, they
are not typically placed in the worst configuration. A set of cities is found as a solution
of the AGP and one can expect that cities are placed in such a way that each city guards
certain portions of the free space. The error of the approximation can be expected in the
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(a) path over v0 (b) path over v1 (c) full refinement

Figure 5.8: Example of path refinement, gray segment represents diagonal of the convex
partition, green points are cities, purple point is a node, red segments represents approx-
imation of the shortest path between the node and the city.

(a) (b) (c)

Figure 5.9: Example of a path approximation and its improvement during adaptation: (a)
node and city are not directly visible, (b) after movement of the node towards the city, (c)
the city is directly visible and path refinement decreased the length about 10%.

first adaptation steps, but in this adaptation phase the direction of the node movement
is more important than the exact shortest path. In the final steps of the adaptation, the
approximation should be sufficient, because the winner nodes are very close to the cities.
The expected behaviour of the proposed approximation is experimentally verified for a
set of problems in Section 5.6.

5.2.4 Determination of the Ring Length

Determination of the ring length is necessary in the MTSP-MinMax to prefer selection of
nodes from shorter rings, therefore a node–node distance has to be computed. Similarly
to the previous approximation of node–city path, the convex partition can be used to find
an approximation of the shortest path between two nodes (points).

Assume a node ν1 in the cell C1 and a node ν2 in the cell C2. A path between ν1 and
ν2 may be constructed from the shortest path between vertices of each cells, S(w1, w2),
where w1 ∈ C1 and w2 ∈ C2. Vertices w1, w2 are selected according to minimization of the
length of the path

|ν1, w1|+ |S(w1, w2)|+ |w2, ν2|.
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Such a path can be refined in similar manner like a node–city path, an example is shown
in Figure 5.10. The approximation can be improved if vertices of edges that intersect the
segment (ν1, ν2) are considered in the refinement procedure. The edges can be found by
the walking procedure used in the direct visibility test for both directions: ν1 → ν2 and
ν2 → ν1. If the incident vertices of the edges are directly visible from ν1 or ν2, then an
alternative path over these vertices can be constructed, see Figure 5.10c.

(a) rough path (b) refined path

test
for direct visibility path

an alternative (shorter)additional vertices

(c) incident vertices

Figure 5.10: Examples of the node–node paths.

The complexity of the proposed approximation can be worse than the complexity of
the SPM construction, because direct visibility tests are performed independently. How-
ever lower real computational requirements are expected, mainly due to the fact that the
approximation is used only for distances between two neighbouring nodes, which are
typically very close, thus they are mostly in the same cell or in the neighbouring cell.

The advantage of the proposed node–node path approximation is its dependence only
on the convex partition and the visibility graph of the environment. The cities are not
used, therefore supporting structures depends only onW . If the number of cities is very
high, e.g. several thousands, the proposed node–node path can also be used for the node–
city paths to avoid storing the precomputed paths from vertices to cities.

City Tour Represented by the Ring

The length of the ring can be estimated in less computational intensive way in comparison
to the approximation of the node–node path described above. The ring represents a tour
over cities and length of the tour can be used as the weight in the competitive rule of the
MTSP-MinMax variant. The shortest paths between all cities are precomputed and a win-
ner node to each city is maintained in order to determine the length of tour represented
by the current ring in O(M), where M is the number of nodes in the ring.

The winner is associated to the city until a new winner is selected. A tour represented
by the ring is constructed from the associated nodes along the ring. If a node has been
selected as a winner in the previous adaptation step and to another city in the current
step the association with the previous city is cleared to reflect change of the ring shape.
Particular winners can be pulled away from the cities during movements of another win-
ner, because they can be in its neighbourhood. So, the tour is only an approximation of
the current ring. In final steps of the adaptation, most of the winners are preserved over
the adaptation steps and the approximation is more accurate.
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(a) step 12 (b) step 42 (c) step 46

Figure 5.11: Examples of tours represented by the ring, the ring is in green and tour rep-
resented by the ring is composed from bold black line segments.

Examples of associated tours are shown in Figure 5.11, where only one salesman is
considered to illustrate the tour association. The first figure shows tour after 11 complete
presentation of all cities during the 12th presentation. However the ring does not cross,
tour has several crossings and does not visit all cities. After several adaptation steps the
tour is complete and finally it is same as the ring.

5.2.5 Alternative Stop Condition of the SOM Adaptation Process

Algorithm 5 is terminated if all winner nodes are sufficiently closed to the particular city.
Additional stop conditions have been proposed in [56], because in cases of large error,
changes of nodes position can be very small due small value of the gain G. Authors
stopped the adaptation if G is equal or less than 0.01 or if nodes are in the same posi-
tion they were at the end of the previous adaptation step.

An observation of the ring evolution is inspiring to propose a more simplified form
of the stop condition. In the last steps, error and G can be still sufficiently high to con-
tinue with the adaptation process, however the winner nodes association to cities can
be preserved. This observation motivates to omit the inhibition mechanism and stop the
adaptation if all cities have the unique winner node in the single complete presentation
of cities. The inhibition mechanism cannot be used, otherwise the adaptation is stopped
after the first step. Therefore a node can be winner more than once in one adaptation step.

In relation to the propose modifications, it is expected that the convergence of SOM is
not guaranteed and the stop condition based on the maximal number of adaptation steps
is necessary. The final solution is obtained as tour over cities along the ring, which are
associated to particular winner nodes. If the algorithm is terminated before unequivocal
tour can be obtained, the complete tour is found by the following procedure.

1. Associate current winner nodes to particular cities.
2. Find the closest (not already associated) node to each city without node.
3. The tour is determined as a sequence of associated cities to nodes along the ring.

The procedure is not necessary if the inhibition mechanism is used, because at the end of
each adaptation step distinct nodes are associated to cities.
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The SOM adaptation procedure with the proposed stop condition is used like a con-
structive heuristic to obtain an initial feasible solution of the TSP, because even if a node
is winner, its position can be changed by the adaptation of neighbouring nodes during
same adaptation step. The inhibition has been introduced to avoid nodes to win too often
and from this point of view the proposed stop condition can be like a step back. Detail
comparison of this approach has not been found in literature. That is why this approach,
called unique, is experimentally verified in the context of the inspection task.

5.3 SOM Adaptation Rule for a Graph Input

A self-organizing map for a graph input has been presented in [274] and the proposed
adaptation rule is demonstrated in the TSP with obstacles. The adaptation process can be
described as movements of nodes along edges of the graph, a node always lies on a graph
edge (between two graph vertices). Cities are represented by particular graph vertices and
a winner node is selected according to the shortest path in the graph. The graph is con-
structed by the topology representing network [187], which uses the Hebbian adaptation
with the winner-take-all competition rule and provides induced Delaunay triangulation.
However a solution of the TSP with 50 cities is presented in the paper, the paper lacks
serious performance comparison. That is the main reason why following algorithm is
proposed and experimentally verified.

For a set of cities C inside polygonal representation of the robot workspaceW a graph
G(V,E) is constructed in two steps.

1. A triangular mesh ofW is used to create an initial graph G(V,E).
2. A triangle is found for each city c ∈ C, the city c becomes a vertex of the graph
G(V,E) and edges connecting c with a particular vertex of the triangle are added to
the set of edges E.

A node ν lies on an edge e ∈ E with incident vertices vi and vj during the adaptation. The
shortest path from ν to a city c is determined as the shortest path over one of the incident
vertices according to distances |(ν, vi)| + |(vi, c)| and |(ν, vj) + |(vj , c)|. The winner node
(and its neighbouring nodes) are moved towards the presented city along the edges of
the graph. A path from a vertex v to the city c can be found by Dijkstra’s algorithm in
O(NT logNV ), where NT is the number of triangles and NV is the number of graph ver-
tices. The adaptation of ν towards c can be done in O(k), where k is the number of paths
vertices. An example of the shortest path from a node to city is shown in Figure 5.12a.
A schema of the adaptation procedure is identical to Algorithm 5, the only change is the
computation of the shortest path. The ring of nodes representing a solution of the TSP can
be used to obtained a sequence of cities, and the final tour can be then constructed from
the visibility graph. An example of a TSP solution is shown in Figure 5.12b. Notice dif-
ferences between a connected ring of nodes (in green) and connected cities as a sequence
of graph edges (in red), the final solution from the visibility graph is shown in black. An
example of a MTSP solution is shown in Figure 5.12c.

As can be seen from Figure 5.12 lots of triangles are not necessary, because their edges
are never used for the adaptation. The used triangular mesh is constructed with desired
minimal angle, and these triangles are created due to small obstacle edges. A polygon
filtering technique presented in the previous chapter can be used to decreased the num-
ber of triangles. Less number of triangles can decrease the computational time, but the
improvement is negligible for small problems.
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(a) the shortest path in the mesh (b) TSP (c) MTSP

Figure 5.12: SOM solutions of the TSP and the MTSP on the triangular mesh.

The complexity of the winner selection can be decreased if all shortest paths between
each vertex and all cities are precomputed and associated to each vertex of the graph.
The shortest path from ν to c can be then determined in the constant time. In addition,
the adaptation of ν towards c can be performed in O(log k) using the binary search algo-
rithm [59]. Although these optimizations may reduced the computational burden, they
also increase the required memory and they are unsuitable for large graphs with thou-
sands of vertices.

5.4 Quality of Cooperative Plan

The MinMax variant of the MTSP leads to minimize the longest tour and one can expect
that other tours will be shorter or equally long. If lengths of tours are equal then all robots
have to travel same distance to accomplish the task. To measure quality of cooperation a
percentage deviation of lengths of tours can be used to provide a scale independent metric
for particular solution of the MTSP. The measure can be called the Cooperative Quotient
(CQ), and its zero value means “ideal cooperation”. The Collaborative Effort (CE) may be
introduced to consider the total traveled distance by all robots. A solution for m robots
(salesmen) consists of m tours with lengths l1, . . . , lm and quality metrics are defined as
follows:

• Maximal length:
L = max{l1, . . . , lm}.

• Cooperative Quotient:
CQ =

sL

L
,

where sL is the root of the sample variance, s2
L = 1

m−1

∑m
i=1(Li − L)2 and L is the

average value of the lengths, L = 1
m

∑m
i=1 Li.

• Collaborative Effort:

CE =
m∑
i=1

li.

A cooperation can be defined as a planning to maximize the utility, while the coordi-
nation is a planning to share a common resource. The problem formulated as the MTSP
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represents the cooperation part of the multi-goal path planning. The common resource
is a free space, where robots perform their movements. A plan that satisfy the coordi-
nation constraint needs consideration of robot position in time, hence detailed model of
robot motion is necessary. The coordination problem is not explicitly addressed by the
proposed formulation of the multi-goal path planning, it can be solved independently af-
ter paths are found [52], e.g. by a prioritized planning [176]. To guarantee the coordination
the planned paths have to be cross-free, except the common depot, which is assumed to
be approximation of initial positions of robots.

5.5 Multi-Goal Path Planning Problem Variants

This section presents two variants of the path planning problem, which are particular
modification of the multi-goal path planning problem formulated as the MTSP. The prob-
lems are motivated by practical needs of the path planning in a search and rescue mis-
sion. Both problem variants are solved by the SOM algorithm for the MTSP-MinMax and
demonstrate flexibility of the SOM approach.

5.5.1 Path Replanning - Multi-Depot MTSP

The MTSP formulation assumes a common depot. This condition is satisfied at the be-
ginning of a search and rescue mission if all robots start from the common place. New
obstacles can be detected during the plan execution, therefore the whole plan should be
replanned. In such a situation, it is necessary to consider the multi-depot variant of the
MTSP, because robots are spread around the environment.

The extension of Algorithm 5 is straightforward. The path (ring) has to start from the
particular initial position of the robot and have to end at the common depot. The path is
not closed, therefore the first node of the ring is adapted to the particular initial position,
while the last node of the ring is adapted to the final common depot. Nodes represent
linear string and neighbouring nodes at the ends of the string are considered only in
particular direction. An example of the algorithm performance is shown in Figure 5.13.

5.5.2 Path Planning for Cooperating Heterogenous Entities

In a search and rescue mission with a team of heterogenous entities, some parts of the
environment can be accessible only for a robot (entity) with special capability. In such
case, it is necessary to consider different capabilities of particular robot and plan a path
for the robot only inside the allowable regions. An example of such situation can be a team
of cooperating robots and human rescuers. A path for the rescuer must be safe, hence it is
necessary that the path avoids dangerous areas, where explosion can impend [161].

To satisfy these requirements a specific map, where restricted areas denote obstacles, is
created for each type of the entity. During the adaptation phase winner nodes are selected
according to a path in the particular map. Algorithm 5 needs to be extended to consider a
specific map for each salesman. An example of solution is shown in Figure 5.14, the green
path avoiding dangerous areas (shown in red) is for the human rescuer, while the blue
path is for a robot, which can enter into dangerous parts of the environment.
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(a) initial plan (b) new obstacle detected (c) replanning

(d) additional obstacle (e) next replanning (f) final travelled paths

Figure 5.13: An example of the path planning and replanning in the multi-depot MTSP
variant.

Figure 5.14: An example of MTSP solution for heterogenous entities.
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5.6 Experimental Results

The proposed extensions of the SOM algorithm for the MTSP in a polygon domain have
been experimentally verified in a set of problems. Due to lack of common problems for
environments with obstacles a set of environments used in the motion planning problem
has been utilized, parameters of the environments are shown in Table B.1.

The SPM approach does not provide sufficient robustness for the environments. There-
fore the SOM algorithm has been evaluated in a set of TSPLIB problems [221] to estimate
algorithm’s performance prior evaluation of the shortest path approximation, the results
are presented in Table B.10. The recommended parameters of the SOM procedure [243]
have been used. A summary of the parameters is in Table 5.2. The adaptation process has
been terminated if the error is less than 0.001 or after 180 adaptation steps.

Found solutions are compared with exact solutions found by the Concorde solver [16]
in the TSP case and with reference solution of the MTSP-MinMax found by GENIUS-
quality as the best solution from 20 found solutions. The quality metrics follow notation
described in Section 5.4, but ratios are used rather than absolute values. SOM and GE-
NIUS are randomized algorithms, and therefore each problem has been solved 20 times
by the particular algorithm variant and the average values have been computed. A sum-
mary of the notation is depicted in Table 5.3.

m . . . the number of salesmen.
#s . . . the average number of adaptation steps.
LR . . . the average length ratio L/Lbest, where L is the length of the longest

tour and Lbest is the length of the longest tour of the reference solution.
TR . . . the average time ratio, particular required computational time divided

by the time of the reference solution.
CQ . . . the average value of the CQ (it is relative for the particular solution).
CER . . . the average Collaborative Effort ratio, it is computed as ratio of the par-

ticular CE and the value of CE for Lbest.
sx . . . the root of sample variance of the variable x.
MS . . . the percent of iterations, which are terminated by the maximal number

of adaptation steps, of all iterations for the particular set of problems
and the algorithm variant.

PDM . . . the percentage deviation to the reference (optimum) tour length of the
mean solution value, PDM = (L− Lref )/Lref · 100%.

PDB . . . the percentage deviation to the reference of the best solution value.
No. Iter . . . the number of performed experiments.

Table 5.3: Used notation.

The examined problems are organized into three sets according to the number of cities:
small, middle and large, see TableB.2. Particular quality of solution is examined over all
solutions of the set. The cities are sensing locations found by the RDS and BP algorithms
for the given visibility distance. Due to small number of cities in the small problem set only
the middle and large sets are examined for the MTSP. The problems are created from the
TSP variants by explicitly placed depot close to the center of the free space. In addition, for
the warehouse, jh, and h2 maps a depot is also placed near to the entrance, and therefore
two problems for each environment are distinguished by subscripts A and B. Depots’
positions (in map coordinates) are presented in Table B.3.
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Three types of the SOM algorithm variants have been examined. The refinement of
the shortest path approximation is studied in the TSP. Determination of the ring length
is studied in the MTSP. In addition, for both problem variants the algorithm performance
for alternative stop condition, Section 5.2.5, is compared with the original stop condition.
The alternative stop condition is denoted as unique algorithm variant, and error represents
the stop condition based on the minimal distance of the winner node to the city. In both
variants, the maximal number of adaptation steps has been set to 180. The overall number
of performed experiments is 3800 for the TSP and 5760 for the MTSP, where the number
of salesmen m is from the set {2, 3, 4, 5}.

5.6.1 Refinement of the Shortest Path Approximation

The refinement of the shortest path approximation has been introduced in Section 5.2.3.
The quality of path refinement has been studied for the node–city paths and evaluated in
the three TSP problem sets. The rough path approximation over a cell vertex is denoted
as va-0, and va-k is a refinement up to k vertices, the full path refinement is denoted as pa.
Aggregated results for each problem set are presented in Table B.4, where selected time
reference is for the unique variant with the va-0 refinement, because it is expected to be the
fastest one. The length ratio is determined from the exact solutions found by Concorde.

An error of the va-0 variant caused termination of the adaptation after 180 steps in
eight environments. The va-0 refinement variant provides the worst overall the solution
quality, but it is the fastest variant. The solution quality of the va-1 variant is similar to
the full path refinement and both variants are competitive with the Euclidean distance in
the TSPLIB problems. Detail results are presented in Table B.5, where Lopt is the optimal
solution found by the Concorde. Notice the computational time for the problems h22 and
ta1, the h2 map contains more vertices, therefore it is more computationally intensive.
Selected best found solutions for the pa variant are shown in Figure B.1.

The main results of the performed experiments is that the va-1 approximation is suffi-
cient and full path refinement does not provide significantly better solutions.

5.6.2 Determination of the Ring Length

The MTSP-MinMax SOM algorithm uses a length of the ring to prefer selection of nodes
from shorter rings. Two variants of length of the ring, see Section 5.2.4, have been ex-
amined, the nn variant is based on the approximation of the shortest path between two
nodes. The second variant, called cc, uses a length of the city tour represented by the ring.
The full path refinement (pa) has been used for node–city paths in the performed experi-
ments. Experimental results are presented in Tables B.6 and B.7, where the reference value
of TR is the nn algorithm variant with the error stop condition. The reference solution of
the MTSP is the best solution found by the GENIUS-quality algorithm from 20 solutions.
Detail results for three salesmen are presented in Table B.8.

The proposed cc determination of the ring length outperforms the nn variant in the
quality of solution and also in the required computational time. However the LR is lower
about units of percents for cc, the CER is almost identical for both variants. Also notice
CER is less than one. The CQ increases with the number of salesmen, which indicates
higher differences in the individual lengths of tours for the particular solution. The pro-
posed path approximation provides better results than the Euclidean distance for the se-
lected TSPLIB problems, see Table B.10. It can be caused by obstacles, which constrain
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the problem, therefore less combinations are “reasonable” and better solutions are found
with higher probability.

Regarding the experimental results the proposed cc variant outperforms the original
SOM algorithm.

5.6.3 Alternative Stop Condition

The alternative stop condition, the unique algorithm variant, has been experimentally
evaluated with the TSP and MTSP experiments. In the case of the TSP, the solution qual-
ity as the average length is not affected, however the standard deviation is higher. The
average number of required adaptation steps is lower than for the error variant as it has
been expected. The inhibition mechanism is not used for the unique variant, thus if the
algorithm does not converge in the defined number of steps, complete tour have to be
determined.

For the middle problem set, the convergence issue is only minor and overall required
computational time is about thirty percent lower than for the error variant. In the case
of the large problem set, differences in the required computational time are not signifi-
cant. Due to the convergency issue, higher number of adaptation steps is required and
the adaptation is terminated after 180 steps, which leads to higher overall required com-
putational time. The solution quality for the MTSP is similar for both variants error and
unique, but for higher number of salesmen and problems from the large problem set the
convergence fail in more than twenty percents.

The unique variant is not suitable for small problems, because found paths are about ten
percent longer while the required computational time is about thirty percent lower that
practically means tens of milliseconds. For the middle and large problem sets the quality
of solution is not affected by the unique stop condition. The required computational time
is also about thirty percents less for middle problem set whereas differences between error
and unique stop conditions are negligible in the case of large set.

The alternative stop condition can be advantageous for the middle problems, a solution
can be found in less computational time, while quality is not significantly worse (less
than one percent). In all other cases, the regular stop condition (error) provides better
performance.

5.6.4 Algorithm Comparison

Results presented in Tables B.6,B.7 and B.8 provide overall comparison of algorithms. Re-
garding the value of LR the GENIUS algorithm provides overall better solutions with
respect to the MinMax criterion. For the large set the SOM-cc variant provides similar LR
like GENIUS-quality and significantly better results than GENIUS-fast. The GENIUS algo-
rithm also provides better results from CQ point of view, which is for each problem less
than one percent, that is significantly less than for SOM with several percents. It means
that all tours are almost equally long in particular solution. The CER is lower for SOM,
which is mainly due to fact that GENIUS improves only the longest tour.

For several problems the SOM algorithm provides shorter the longest tour than the
best solution found by the GENIUS-quality, see Table B.8. The results also indicate that
the SOM algorithm seems to be sensitive to the depot position, because quality of found
solutions for depot A and B variants is significantly different, which can be related to
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the important aspect of the SOM solutions. SOM tries to preserve topology of the input
space, which leads to prefer solutions without mutually crossings tours. To illustrate this
behaviour four best solutions found by both algorithms are presented in Figure 5.15.

(a) GENIUS, L=46.3 m,
CQ=1.5 %, CE=182.7 m

(b) GENIUS, L=11.7 m,
CQ=1.6 %, CE=46.1 m

(c) GENIUS, L=80.5 m,
CQ=0.4 %, CE=240.3 m

(d) SOM, L=46.1 m, CQ=6.0 %,
CE=172.8 m

(e) SOM, L=11.6 m, CQ=3.4 %,
CE=44.8 m

(f) SOM, L=81.7 m,
CQ=5.1 %, CE=231.2 m

(g) GENIUS, L=253.06 m, CR=0.3 %, CE=1261.9 m (h) SOM, L=275.4 m, CR=13.6 %, CE=1147.0 m

Figure 5.15: Examples of found solutions by the GENIUS-quality and SOM (error, cc vari-
ant) algorithm, L – length of the longest tour, CR – Cooperative Ratio, CE – Collaborative
Effort: (a,d) map potholes, m=4;(b,e) map m3, m=4;(c,f) map jh, m=3;(g,h) map h2, m=5;

From the path planning point of view SOM provides an interesting feature, found tours
tend to do not cross that means such solutions guarantee the coordination. To guarantee
coordination for the GENIUS solutions it is necessary to consider velocity profiles for each
robots and probably the robots will not collide, at least for the presented cases.
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5.6.5 Required Computational Time

Two supporting structures have to be precomputed in order to use the proposed approx-
imation of the shortest path. Required computational time to create a convex polygon
partition is in units or tens of milliseconds and it is negligible in comparison to the re-
quired time of the adaptation procedure. Also a construction of the visibility graph is very
fast, it is found in 41 milliseconds for the largest problem with 575 cities. The most time
expensive part of the preparation phase is a computation of the shortest path between
cities (and vertices), the time is included in the presented results. The shortest paths are
also necessary for the GENIUS algorithm, and also the time is included in the presented
results. The computational time depends on the number of cities and also on the partic-
ular environment, therefore the times are presented as histograms of average values in
Figure 5.16. All algorithms have been implemented in C++ and compiled by the G++ 4.2
with -O2 optimization flag, all computations have been performed within the same com-
putational environment using a single core of the Athlon X2 at 2 GHz CPU, 1 GB RAM,
running FreeBSD 7.1.
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Figure 5.16: Required computational time of the TSP/MTSP algorithms.
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5.6.6 Adaptation on a Triangular Mesh

The adaptation procedure for a graph input has been evaluated for two problems with 36
and 356 cities and the jh map. A set of triangular meshes has been generated according
to specified maximum triangle area and minimal triangle angle [237]. For each problem
and particular mesh 20 solutions have been found and compared with optimal solution
as percentage deviations PDM and PDB in Table B.9. In addition, solutions found by the
proposed approximation of the shortest path are presented in the last three rows, the error
stop condition is used. Examples of solutions are depicted in Figure B.2.

For the lower number of cities, the mesh is competitive with the convex polygon parti-
tion. In the examined problems, the va-1 variant outperforms all other algorithm variants.
The path refinement va-0 provides solution with similar quality, but lower required com-
putational time. The convergence trouble does not appear in the examined problems.

For the high number of cities the triangular mesh does not provide sufficient the so-
lution quality, also it is more computationally intensive than the approximation of the
shortest path. SOM on a triangular mesh is suitable for problems with lower number of
cities, where lower number of triangles is sufficient.

5.7 Discussion

The proposed approximation of the shortest path allows application of the SOM adapta-
tion procedure to the multi-goal path planning problems in a polygonal domain. A path
based on the convex partition provides sufficient approximation, it is computationally
feasible and it is not affected by geometrical issues like the SPM approach. Moreover,
experimental results indicate that the full path refinement is not necessary.

The convex polygonal partition is one of the main advantage of the proposed approxi-
mation. It is a property of the environment, so it is independent on the set of cities (sensing
locations). The proposed algorithm has been performed more than five thousands times
without numerical issues, which indicates sufficient robustness of the algorithm.

Also experimental results show that the proposed SOM-cc variant provides better so-
lution than the direct computation of the length of the ring. SOM-cc does not require
approximation of the shortest path between two nodes, therefore only the node–city path
queries are performed. The quality of found solutions is competitive with the general
heuristic GENIUS, but solutions require less computational time than GENIUS-quality.
The GENIUS-quality algorithm is very computational intensive, while GENIUS-fast is
faster than the proposed SOM-cc, but SOM-cc provides better trade-off between the qual-
ity and required computational time.

Determination of the path among obstacles is more than hundred times computation-
ally expensive than usage of the Euclidean distance. The initial version of the SOM ap-
proach based on computation of the visibility graph was very slow, even slower than the
GENIUS algorithm [262]. The approximation of the shortest path significantly reduces the
required computational time, while the quality of found solution is not decreased, accord-
ing to the comparison of the path refinements and the SOM performance in the Euclidean
TSP. From a real applicability in mobile robotics point of view the required computational
time seems to be acceptable for problems with hundreds of cities, which is the typical
number of cities in the inspection planning for maps of real buildings.
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The used SOM schema [243] can be extended in various ways with respect to recent
variants of SOM for the TSP, and it will be more likely outperformed by the memetic
approach [64] or the Co-Adaptive Net [56]. The proposed modification of the adaptation
procedure can also be applied in new SOM variants, because the main principle of SOM
is the same. It should be remarked that the quality of the MTSP solutions is better for
problems with obstacles than without them in comparison to solutions found by GENIUS.
The quality can be related to the fact that the examined problems represent instances of
the inspection task, where cities are placed in a planar map of an indoor environment. This
observation is particularly important in the context of algorithm benchmarking and their
real application, like in the presented multi-goal path planning in the inspection task.

The fastest proposed variant va-0 of the path refinement does not provide sufficient
quality of the path to find a stable solution of SOM in particular environments, but the
adaptation can be terminated after a given number of adaptation steps and the best found
tour can be used as the solution like in the Co-Adaptive Net algorithm.

A supporting graph instead of a convex partition can be used, especially for small
number of cities. For higher number of cities (several thousands) the used triangular mesh
provides worse performance than the proposed path approximation. The mesh contains
many unnecessary vertices and edges, which are not used during the adaptation pro-
cedure. Possible future work on supporting structures can combine the triangular mesh
and paths in the convex partition, because nodes are principally moved along the shortest
path between cities (vertices). The important aspect is a discretization of the free space in
order to provide sufficient domains for weights of neurons.

The SOM procedure also provides sufficient flexibility to solve particular problem vari-
ants that has been demonstrated in Section 5.5. Together with proposed extensions it rep-
resents a flexible tool to address multi-goal path planning problems for known or partially
known environments, especially with concerns to following aspects:

• a single robot and optimization criterion (TSP formulation),
• a cooperating group of robots and optimization criterion (MTSP-MinMax formula-

tion),
• a heterogenous team of robots,
• multi-depot variants.

The multi-goal path planning problem needs a determination of the path among obsta-
cles, which can be very computational demanding. In [226], authors proposed reduction
of the number of required paths, thus from this point of view, the SOM algorithm requires
more than necessary number of paths and fast and efficient determination of the path is
crucial for reasonable computational requirements. On the other hand, the SOM proce-
dure provides interesting features, mainly the non-crossing paths that guarantee the co-
ordination and simple competitive rule for the MinMax variant. To remember the related
work, the coordination has been explicitly addressed for the two robotic arms by a modi-
fied competitive procedure in [215], which can be possibly applied in the MTSP. From this
perspective the proposed SOM algorithm forms a solid framework for possible extensions
to address the coordination issue or other robotics tasks, while it support relatively cheap
solution of the cooperation according to the MinMax criterion.

The proposed approximation and experimental results show one possible way how the
SOM procedure can be utilized in the multi-goal path planning problem and it can open
possible future applications, e.g. for 3D environments, where approximate shortest paths
are necessary.
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Chapter 6

Generalized Multi-Goal Path
Planning

The multi-goal path planning problem is formulated as the TSP in this thesis. If particular
goals are partitioned into groups, the problem can be called generalized multi-goal path
planning problem [226]. The problem is to find a shortest path to visit at least one goal
from each group. In this chapter, the generalized multi-goal path planning problem is
considered in the context of the inspection planning for a group of cooperating mobile
robots. At first, an extension of the point sensing location to the segment is considered in
the decoupled approach of the inspection task, thus the inspection task is accomplished
if a robot performs measurement at least at one point of each segment, Section 6.1. After
that, more general problem is examined, the goal is considered as an Area of Interest (AoI)
that can be represented as a polygonal region in a polygonal domain, Section 6.2.

A solution of the proposed generalized problems is based on the SOM adaptation pro-
cedure described in the previous chapter. The main idea of the competition is same, but
the adaptation rule is modified in order to adapt nodes towards the generalized goal.
Due to lack of alternative approaches the proposed algorithms have been experimentally
verified in selected problems, therefore instead of detail results (like in the previous chap-
ters) only illustrative solutions are presented to demonstrate feasibility of proposed al-
gorithms. The chapter is concluded with discussion of proposed extensions and further
applications.

6.1 Inspection Planning for Segment Sensing Locations

A segment sensing location represents a set of possible locations where a measurement
can be performed. The SOM procedure may adapt a node towards the segment goal, how-
ever it is necessary to find a path from a point to the segment. Determination of such a
path can be supported by the SPM for the segment goal, which can be found by propa-
gating a wavefront from the segment. The propagation starts with the segment wavefront
parallel to the segment goal, and after the first event, the process is identical to the point
goal. The path can also be found by the navigation function that provides a direction to
the goal for a robot at any position inside the free space and the goal will be reached if the
robot follows the direction [52]. The artificial potential field (APF) technique can be used
to find suitable navigation functions, because it is able to generate an attractive potential
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for an arbitrary shape, hence solution for the segment goal is found by the same method
like for the point goal.

A set of segment sensing locations is found as a solution of the AGP with segment
guards. The algorithm to find the set is described in Section 6.1.1 and the APF technique
is briefly introduced in Section 6.1.2. An application of paths from the navigation func-
tions in the MTSP is demonstrated in Section 6.1.3. Modifications of the SOM algorithm
from the previous chapter for navigation functions and segment goals are described in
Section 6.1.4.

6.1.1 Art Gallery Problem with Segment Guards

The segment guards represent sensing locations in the inspection task such that the whole
environment is inspected if measurements are performed at each found location. The seg-
ment guard has been used by Toussaint as mobile guards and diagonal guards have been
studied by Shermer [235]. To demonstrate the SOM approach for the segment goals, it is
not necessary to have the minimal set of guards, thus a straightforward solution based on
diagonals of polygonal representation of the robot workspaceW is used. From the same
reason only the case for unrestricted visibility range is considered.

Algorithm 7: AGP with segment guards
Input:W - workspace to be covered
Input: C = {P1, P2, Pn} - convex polygon partition ofW , Pi is a convex polygon
Result: G = {d1, d2, . . . , dm} - found set of segment guards

while |C| > 0 do
d← select random diagonal from C // Pi has at least one diagonal

C ← C \ {Pi|d ∈ Pi} // cover incident polygons with d

G← G ∪ {d}

The segment guards of the polygon W are found from the convex polygon parti-
tion [233] by Algorithm 7. The algorithm selects a random diagonal from the partition un-
til the wholeW is covered. The diagonal is incident with two convex polygons, thus two

(a) map jh (b) map potholes (c) map warehouse

Figure 6.1: Examples of segment guards.

polygons are covered from any point of the diagonal. A partition is found in O(n log n),
where n is the number of W vertices. The number of diagonals is less than n, therefore
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the total complexity of the algorithm isO(n log n). Examples of found segment guards are
shown in Figure 6.1.

The presented Algorithm 7 can be easily extended for the restricted visibility range.
Instead of simple convex polygon partition a convex cells used in the CPP, Section 4.3.1,
can be utilized. The set of diagonals is replaced by the set of particular edges of the convex
cells that are entirely insideW .

6.1.2 Artificial Potential Field

The well known issue of the potential field methods are local extremes. A harmonic func-
tion has been used as the potential function [150] to avoid possible local extremes. A har-
monic function g satisfies Laplace’s equation∇2g = 0 on the domain Ω [57]. The boundary
of Ω is denoted as δΩ and it represents the boundary of all obstacles in the configuration
space C. As consequence of the Gauss Integral Theorem the integral of g over the closed
boundary is zero (6.1). ∫

δΩ

∂g

∂n
dS = 0 (6.1)

The solution of Laplace’s equation can be found analytically or numerically. The analyt-
ical solution can be found only for special cases and it is not affordable for general case,
therefore numerical solutions are preferred. A solution can be found by the Finite Dif-
ference Method (FDM) [57], which uses a computation grid as an approximation of the
partial derivatives by particular differences of neighbouring cells. The approach is suit-
able for the grid based maps, as information about surrounding environment is already
represented in the grid form. The Finite Element Method (FEM), which is based on dis-
cretization of the solution domain, is suitable for the polygonal representation of environ-
ment. One of the common discretization is a triangular mesh, which can be created for
constraints such as triangle angles or area.

A boundary condition may be specified to solve Laplace’s equation. Two conditions
can be considered: Dirichlet and Neumann. The Dirichlet condition specifies value of the
function g at the boundary δΩ

g = c(x, y), (6.2)

for two dimensional configuration space, while Neumann condition specifies first deriva-
tives

∇g = c(x, y). (6.3)

Values of the boundary conditions c(x, y) are usually constants and they are selected
according to desired preference of clearance from the obstacles, the goal has the minimal
value. The best practical approach is combination of Dirichlet and Neumann conditions,
because if only Dirichlet condition is used for the boundary of obstacles, the following
issue can occur. The value of the potential decrease from obstacles in direction to the
goal. If a goal is too far from obstacles, a difference between two potential values of two
neighbouring elements can be very small and usual numeric precision can be insufficient.
Thus Dirichlet condition is applied to the goal and Neumann condition is applied for
obstacles to increase value of potential around the obstacles.

For more details about FEM solutions see [103, 185] or applications in the trajectory
control [89, 68] or path planning in the exploration task [78, 255] where authors discussed
numerical methods to calculate potential fields based on specified boundary conditions.
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(a) map maze, 15 808 elements, 29 000 triangles (b) map var density, 19 243 elements, 35 942 triangles

Figure 6.2: Distance maps created from the navigation function for the point goal.

(a) map maze, 15 808 elements, 29 000 triangles (b) map var density, 19 243 elements, 35 942 triangles

Figure 6.3: Examples of paths obtained by the navigation functions for the point goal.

The navigation function is represented by the value of potential of each element. These
values can be used to construct the so-called distance map. The distance computed from
the average potential of the triangle vertices can be associated to each triangle. Examples
of the distance map are shown in Figure 6.2 where the dark blue color denotes the goal
and the red color the farthest place from the goal. Such visualization provides overview
of distances along the potential gradient to the goal.

A path from an arbitrary point to the goal can be found from the navigation function
with desired smoothness. The path can be found as a sequence of points by the following
procedure. Potentials of neighbouring vertices are used to determine the gradient from a
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point inside some triangle, the gradient defines direction to the goal. Then, a new point
is found from the found direction and given sampling distance. The sampling procedure
is repeated for the new point until the goal is reached. Examples of paths from several
points of obstacle boundaries are shown in Figure 6.3.

An advantage of the APF technique (particularly FEM) is ability to find a navigation
function for a goal with an arbitrary shape, only boundary conditions need to be speci-
fied. An example of the distance map and several paths for a polygonal goal is shown in
Figure 6.4. The environment is modified map dense, in which one of the obstacle is used
as the goal. The solution is found by FEM for 20 143 elements and 37 098 triangles.

(a) distance map (b) paths to goal

Figure 6.4: A navigation function for the polygonal goal, modified map dense.

All presented solutions of the APF in this chapter are found for the same settings of
the boundary conditions. The value of Dirichlet condition (for the goal) has been set to -1
and the value of Neumann condition (for obstacles) has been set to 1. The solution of the
APF is found as the solution of a system of linear equations. The required computational
time to solve the system is in hundreds of milliseconds1.

6.1.3 MTSP with APF Navigation Functions

The navigation function can be used to find paths between two cities in the MTSP for-
mulated for a graph. Lengths of paths can define cost of edges. The navigation function
is found individually for each city, therefore two paths can be used to connect two cities
(two different APF problems are solved), see Figure 6.5. The green path corresponds to the
navigation function for the upper city, while the red path is from the top city to the bottom
city. Two possible paths leads to an oriented graph, or only the shortest path between two
cities can be considered.

1 The construction of the system of linear equations from elements of the triangular mesh takes several
seconds using the Athlon X2 at2 GHz CPU, because of naı̈ve implementation in Matlab 7.6. It is expected that
a proper implementation in C will be much faster.
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(a) two possible paths between
the two point cities

(b) distance map for the green
path

(c) distance map for the red path

Figure 6.5: An example of paths between two cities.

Once the graph is created, the multi-goal path planning problem with navigation func-
tions can be solved by a TSP solver for a graph input, e.g. Concorde [16] or GENIUS de-
scribed in Section 5.1.1. Examples of solutions of the TSP and MTSP-MinMax are shown in
Figure 6.6. Cities are found as a guarding set and paths between cities are provided from
the AFPs solved by FEM, therefore the found paths represent solution of the inspection
task.

(a) TSP, d=inf (b) MTSP-MinMax, d=2 m

Figure 6.6: Solutions of the inspection task with point sensing locations and navigation
functions for the potholes map and the visibility range d.

6.1.4 SOM Adaptation Procedure for the Segment Goals

Paths for the segment goals can be found by the APF approach, but the graph based
algorithms for the TSP cannot be directly used. The main issue is that a destination point
at the segment depends on the position at the previous segment in the tour. If the position
of a vertex (representing the segment) in the tour is changed, the path can be completely
different, this is not an issue for point cities where changes are only local.

The issue is not the case of the SOM adaptation for the MTSP, because the tour is repre-
sented by the ring of nodes. A navigation function can be used similarly to the approxima-
tion of the shortest path described in Section 5.2.2. The winner node is selected according
to its distance to the goal, which is determined from the path provided by a navigation
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function. Such paths are also used to move nodes towards the goal. The adaptation pro-
cedure is terminated if each winner node is closer to the goal than the given distance δ.

The final tour over goals (cities) can be easily constructed for the point goals, due to
inhibition mechanism. In the case of the segment goals, an approximate tour can be con-
structed from the winner nodes, because they can be negligibly close to the segments.
Alternatively a tour can be constructed by the following procedure, which can be also
used for the MTSP-MinMax where nodes from shorter rings are preferred.

Assume two winner nodes νa and νb associated to the segments sa and sb, see Fig-
ure 6.7b for an example. Due to inhibition mechanism these two winners are distinct
νa 6= νb. For each goal a navigation function is computed in advance. A path from the
node ν to the segment goal s is determined by the navigation function gs(ν) and the end-
point of the path at s can be denoted as end(gs(ν)). Then, the goals sa and sb can be
connected as follows.

1. Determine endpoints of paths from νa and νb to the segments sa and sb; ϑa =
end(gsa(νa)) and ϑb = end(gsb(νb)).

2. Two paths connecting sa and sb can be constructed:

(a) a path from ϑa to sb defined by the gsb(ϑa) and a part of the segment sb from
the endpoints end(gsb(ϑa) and ϑb,

(b) a path from ϑb to sa defined by the gsa(ϑb) and a part of the segment sa from
the endpoints end(gsa(ϑb) and ϑa.

3. The shorter path from the two variants is selected and goals sa and sb are connected.

For a sequence of three goals sa, sb, sc paths are firstly determined for each pair (sa, sb) and
(sb, sc). After that, parts of the segments defined by the particular endpoints are added to
the length of the path from sa to sc over sb. The final tour over all goals is found by the
same schema. This proposed procedure provides only approximate solution of the short-
est path connecting given set of segment goals. The advantage of the SOM adaptation is
that a winner node is very close to the end point at the associated segment.

The SOM adaptation procedure with the navigation functions gs is the same as for
the Euclidean distance, the only difference is that instead of the Euclidean distance the
navigation function is used to provide a path from a node to the city. A solution of the
TSP is depicted in Figure 6.7c.

(a) paths to the segment goal (b) connections of segment goals (c) solution of the TSP

Figure 6.7: An example of found paths to segment cities.
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The algorithm for the MTSP is similar to the TSP algorithm. A depot can be a point or
a segment like other goals, the navigation function can be found for both variants. The
length of the ring required in the competitive rule (5.2) is determined as the length of the
tour represented by the ring. The procedure to find the final tour described above is used.
Examples of MTSP-MinMax solutions are shown in Figure 6.8. The navigation functions
are found by FEM with the average number of elements around three thousand and the
average number of triangles around four thousands.

(a) two salesmen (b) three salesmen

Figure 6.8: Solutions of the MTSP-MinMax with 57 segment cities.

6.2 Inspection Planning for Areas of Interest

The next step of the goal generalization is consideration of polygonal region of the robot
workspaceW . An example of such generalized problem can be the safari route problem
introduced by Ntafos in 1992, which aims to find some shortest tour visiting given set of
convex polygons attached to the inside boundary of a simple polygon [109]. The motiva-
tion for the safari route problem was the limited visibility range, because to see something
interesting it is necessary to move closer to some region, but also it is not necessary to see
the object of interest from a shorter distance than the visibility range d.

Therefore to see an object inside the convex polygon with size less than d it is sufficient
to visit the border of the polygon. Such a polygon can be called Area of Interest (AoI)
and its convexity guarantee that the polygon is covered (inspected) from any point of the
polygon. The safari route problem can be too restrictive for a real application with mobile
robots that is why the following extensions are considered in this section.

• At first, an AoI can be inside polygon with holes, which is more suitable model for
an indoor environment than the simple polygon.
• An AoI can be entirely inside the free space, e.g. to inspect particular part of ceiling

or floor, and not necessary attached to the boundary of the polygon.
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• Particular AoIs can overlap each other.
• The cooperative behaviour of a group of mobile robots can be accomplished by the

MinMax criterion, therefore similarly to the TSP also the safari route problem can
be extended to find several tours with respect to the MinMax criterion.

According to the proposed extensions the studied problem can be formulated as follows.
Path Planning Problem to Visit Areas of Interest - Find m tours visiting given set
of convex polygons (possibly overlapping each other) in a polygonal domain such that
each polygon is visited from at least one tour, while the longest tour is minimized.

The proposed problem is addressed by two approaches described in the next sections.
In both approaches, the approximation of the shortest path, supporting triangular mesh
or the APF can be used to determine a path from a node to the goal. The main ideas
of the proposed approaches are independent on the path determination, therefore the
approaches are presented for particular selected method. A discussion of the triangular
mesh advantages are presented in Section 6.2.3.

6.2.1 Adaptation Procedure for the AoIs

The same SOM algorithm as for the segment guards can be used for the AoIs, because
the suitable navigation function for the polygonal shape of the goal can be found by the
same APF technique, see Figure 6.4 for an example. Also the final tour can be found by
the same procedure like for the segment guards, due to convexity of the AoI. Another
way (maybe more intuitive) is described in this section. It is based on the fact that an AoI
can be represented by a set of sampled points. The problem can be then formulated as the
MTSP and can be solved by the approach presented in Section 5.2. The main difference is
in the selection of the winner node.

The closest node–point pair has to be found in the winner selection procedure of the
SOM algorithm, because the goal is represented by a set of points. The competitive rule
(5.2) is modified to consider selection of the best point from the set. Let the border of the
polygonal goalG is sampled into finite number of pointsG={g1, . . . , gk}. Then, the winner
node is selected according to its minimal distance to G

νwinner = argminν∈N ,g∈G |ν, g| ·K, (6.4)

whereN is the set of nodes and K is the weight to prefer selection of winner from shorter
ring introduced in (5.2). The length of the ring can be computed directly from an approxi-
mation of the shortest path between two points or as the length of the city tour represented
by the ring.

The complexity of the presented approach depends on the number of goals and the
number of sampled points. Thus, from this point of view it is more computationally in-
tensive than the application of the navigation functions, which does not depend on the
number of sampled points. The supporting structures for an approximation of the short-
est path (node–city) must be prepared for all points representing the AoI, alternatively the
node–node path approximation can be used.

Three solutions are shown in Figure 6.9 where the black line segments represent rings
of nodes. Particular winners, the closest nodes to the AoIs, are connected by the approxi-
mation of the shortest path to form the final tours, which are represented by the bold col-
ored line segments. The solutions have been found in units of seconds using the Athlon
X2 at 2 GHz CPU, FreeBSD 7.1 and C++ implementation compiled by the G++ 4.2 with
-O2 optimization flag.
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(a) m=1 (b) m=2 (c) m=4

Figure 6.9: Inspection planning for AoIs, m salesmen and MinMax criterion.

6.2.2 Representative of the AoI

The main drawback of the above presented approach is sampling of the AoI shape by sev-
eral points, which increases computational burden. An alternative approach can be based
on the geometrical interpretation of the ring evolution and shape of the AoI. The idea is
as follows: use one representative point of the AoI as an attractor for a node movement
and if the node is inside the AoI stop its movement. The AoI is convex, thus it can be
inspected from any point inside the area. A suitable representative point of the AoI can be
the centroid of the convex polygon. The adaptation procedure for the MTSP, Algorithm 5,
is modified to adapt nodes towards the centroid in the following way.

1. A winner node is selected according to its distance to the centroid of the presenting
AoI to the network,

2. The winner node (and its neighbouring nodes) are moved towards the centroid only
if they are not already inside the AoI.

Determination if a node (point) is inside the AoI with n vertices can be done in O(n) by
the winding number or in O(log n) [206], because of AoI convexity.

(a) map jh (b) map jh (c) map dense

Figure 6.10: Inspection paths for AoIs with representative of the AoI.

Three solutions found by the proposed modified adaptation procedure with represen-
tative of AoIs (and supporting triangular mesh) are shown in Figure 6.10. The thin colored
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line segments represent the shortest paths between centroids of the AoIs and can be used
for the final tour. The solutions have been found in hundreds of milliseconds in the same
computational environment used for the experiments in the previous section.

6.2.3 Adaptation with Supporting Triangular Mesh

The triangular mesh approach can be computationally intensive for many triangles. On
the other hand, it can be very efficient for lower number of triangles, and if particular
paths to goals are precomputed and associated to each vertex of the mesh.

For the approach based on the AoI sampling, the most suitable point of the AoI border
is selected in linear time. The selection process can be speeded up using pre-computed
the best sampled point for each vertex of the mesh, thus the complexity will be the same
as for the selection procedure of the TSP algorithm for the point cities, Section 5.3.

The triangular mesh can also be advantageous for the representative of the AoIs. Each
vertex and edge of the mesh can have associated information about incident AoIs that can
be used to speed up the process of the determination if a node is inside the AoI.

6.3 Discussion

The generalized multi-goal path planning problem has been addressed in this chapter by
the SOM adaptation procedure. Two particular instances of the generalized problem have
been introduced: cooperative inspection of segment goals and cooperative inspection of
convex polygonal AoIs. Three approaches have been proposed to find a solution of these
problems:

• adaptation of nodes using navigation function,
• selection of a point goal from the set of points representing the generalized goal, and
• adaptation to the representative of the AoI.

A solution of the problem with segment goals have been demonstrated in the inspec-
tion planning for segment sensing locations where point guards have been replaced by
the segment guards. The key component of the proposed solution is application of a navi-
gation function, which provides a path to more general goal than just a point. Navigation
functions have been found as solutions of the harmonic APF by FEM. In general, any
navigation function can be used, the only requirements of the SOM adaptation procedure
are:

• it has to provide a distance from an arbitrary point in the free space to the goal, and
• it has to provide a path, along which a node is moved towards the goal, e.g. a se-

quence of points in a polygonal domain.

The main limitation of the navigation functions relates to the computational requirements.
The functions can be precomputed, but for example in the case of the used FEM for the
harmonic potential with several thousands of finite elements, the memory requirements
increases quickly with every new goal. One of the possible future work can be based on
utilization of new computational capabilities of the GPGPU [1] to find a solution of the
APF in real-time. The used FEM method is common technique, therefore such general
algorithms can be expected in near future, as the capabilities of widely used GPGPUs are
going to be more and more powerful.

91



6.3. DISCUSSION

An important feature of the used APF should be remarked. The found paths are smooth,
therefore a velocity profile for a path can be found, e.g. by the procedure [86]. Such a
profile can be found with consideration of the maximal allowable velocities and accelera-
tions, hence such planned paths can satisfy additional kinodynamic constraints. Moreover
found velocity profile can be used to determinate cost of the path as the required time to
travel. On the other hand, found paths (from certain points) are unnecessarily long, e.g.
in Figure 6.3a. This issue is discussed in [185], where a solution based on a division of the
free space is proposed.

In relation to the smoothness of paths, it should also be noted that connected paths (as
a solution of the TSP) are not smooth, see Figure 6.6. This is not an issue for the discrete
sensing in the related inspection task. A robot with the differential nonholonomic drive
is assumed and the robot stops at the sensing locations to perform measurement and it is
able to turn in the required direction and follows the planned path.

The selection of a point goal from the set of sampled points represents straightforward
extensions of the SOM algorithms for the MTSP. The advantage of the method is that it
does not require computation of the navigation functions, which can be more computa-
tionally intensive than the selection process for small problems.

The adaptation to the representative of AoI replaces the sampling of the polygonal goal
by a simple test if a point is inside the convex polygon. The proposed adaptation rule
shows advantage of the evolution of ring of nodes in a polygonal domain. In a certain
sense, the rule demonstrates combination of visibility with metric properties in the so-
called hybrid-visibility problems introduced by Shermer. This concept is extended in the
next chapter where an adaptation procedure for the watchman route problem is proposed.

A path between node and presented goal to the network can be determined by the
approximation of the shortest path, navigation function, or adaptation can be performed
on a graph (triangular mesh). In general, any motion planning algorithm can be used,
however for practical application it has to provide a path sufficiently fast to get reasonable
computational time of the SOM algorithm.

The SOM adaptation procedure allows straightforward solution of the problem for
several robots, the MinMax criterion is considered by preference of nodes from shorter
rings, where a length of ring can be found as a length of the tour represented by the ring.
The procedure allows to specify the common depot (starting point), or individual depots
for a particular robot. These features together with adaption in a polygonal domain make
the SOM adaptation procedure very flexible. The introduced path planning problem to
visit AoIs is an extension of the safari route problem. Also the zoo-keeper route prob-
lem [50] can be solved by the proposed algorithms using the modification described in
Section 5.5.2.

To conclude this chapter, the presented solutions of the proposed problems demon-
strate flexibility of the SOM adaptation procedure to address various routing problems,
which are related to the geometrical properties. The proposed modifications or more pre-
cisely supporting structures for the SOM can be eventually applied for another hard prob-
lems studied in the computational geometry, e.g. a solution of the problem with segment
goals can be inspiring for the touring polygons problem.
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Chapter 7

Inspection Planning with
Cooperative Continuous Sensing

This chapter is dedicated to the problem of inspection planning with continuous sens-
ing that can be formulated as the Watchman Route Problem (WRP) and as the Multiple
Watchmen Route Problem (MWRP) with the MinMax criterion in the case of a group of
cooperating mobile robots Similarly to the sensor placement problem the limitation of the
sensing range is more realistic in the context of search and rescue mission, therefore the
problem can be constrained to the d-visibility and a suitable variant of the WRP formula-
tion becomes the d-sweeper route problem. Moreover size of mobile robots should also con-
sidered. Similarly to the previous chapters a point robot (with differential nonholonomic
drive) can be assumed in the shrunk polygonal representationW of the robot workspace.

Regarding the additional constraints the studied problem of inspection planning with
continuous sensing for a group of cooperating robots can be formulated as follows:For a
given polygonW (possibly with holes) find m paths inW such that all points ofW are d-visible
from at least one point of a path from the set of found paths, and the length of the longest path is
minimized. For short, the problem is referred as the MWRP-MinMax and as the WRP for
the single robot in the rest of this chapter.

The formulated problem is addressed by a new proposed algorithm that is based on
the representative of AoI introduced in the previous chapter, Section 6.2.2. The idea of the
proposed adaptation procedure can be summarized in following observations.

• The SOM adaptation procedure evolves a ring of nodes in a geometrical space, and
the ring “explores” topology of the free space during the learning phase.
• The ring can form a watchman route and a coverage of the route can be computed

during the adaptation.
• Uncovered parts of the workspaceW can be determined from the ring coverage.
• Representative points of uncovered parts ofW can be used to attract nodes towards

them, just like cities are presented to the network in the TSP.
• It is sufficient if the route just enters into a part of W for covering the part, thus

representative points of uncovered parts are more like attraction points.

It is obvious that some kind of visibility have to be utilized during the adaptation to
deal with the continuous sensing along the ring. Similarly to the problem with obstacles,
the naı̈ve approach is too computationally intensive, therefore it is necessary to use a
supporting structure to decrease computational burden.
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The realization of the proposed adaptation procedure can be decomposed into three
sub-problems:

1. determination of the current coverage along the ring and uncovered parts ofW ,
2. determination of attraction points of the uncovered parts,
3. adaptation of nodes to attraction points.

The first two sub-problems are addressed by supporting structure which is discussed in
the next section together with an algorithm to compute a coverage of the ring. The pro-
posed adaptation procedure and algorithms to solve the WRP and variants of the MWRP-
MinMax are presented in Section 7.2. Experimental results are presented in Section 7.4.
The last section of this chapter is dedicated to discussion and future work.

7.1 Supporting Structures and Algorithms

Convex polygons are advantageous in visibility problems. Just to remind one of the ear-
liest work, Fisk’s proof of the Art Gallery Theorem is based on supporting triangulation,
which is a convex partition. A convex partition of a polygon P is a collection of convex
sub-polygons within pairwise disjoint interiors whose union is exactly the polygon P .
Another commonly used collection of convex polygons is a convex cover, in which sub-
polygons can overlap. More formally a convex cover of polygon P is a collection of convex
polygons P1, . . . , Pk such that P1 ∪ . . . ∪ Pk = P .

Let’s think about watchman walk in a convex partition and cover. If a watchman have
to see whole free space of the polygon W , it have to explicitly visit all polygons of the
partition. It means while one polygon is visited the watchman has to move to another
polygon and has to leave the current polygon. In a convex cover, a watchman can cover
several convex polygons from a single point, because polygons can overlap. Hence to
cover additional part of the environment smaller movement can be sufficient. From this
point of view a convex cover seems be more suitable for the WRP algorithm, however
it can contain more polygons than partition. Examples of convex partition and cover are
shown in Figure 7.1.

The problem of finding the minimal convex cover is know to be NP-hard even for a
simple polygon without holes [65], which is not helpful to decrease computational re-
quirements. The intention of the convex cover is to supported determination of covered
parts of W from a watchman route (ring of nodes) in such a way that incident convex
polygons with the ring are the covered parts of W . From this perspective any convex
cover can be possibly used, the important aspect of the supporting structure is efficient
determination of ring coverage and also determination of attraction points.

Regarding the requirements of the supporting structure a triangular mesh is used to
find a convex cover, because it can be used to support determination of the current cover-
age of the ring. Moreover the centroid of each triangle can be used as an attraction point.
The idea of the coverage computation is based on determination of incident triangles with
the ring by the straight walk algorithm and association of convex polygon from the cover
to each triangle. The current coverage of the ring can be computed by the union of all
incident polygons, which can be efficiently implemented due to discretization of the free
space into a finite set of triangles.

A triangular mesh can be found by the quality mesh generator [237] that provides a tri-
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(a) convex partition (b) convex cover, d=inf (c) convex cover, d=1 m

Figure 7.1: Example of convex partition and convex cover of map jari, polygons are re-
stricted to the size d.

angular mesh with specified maximum triangle area and minimal triangle angle1. Smaller
triangles lead to higher number of triangles and to find several overlapping convex poly-
gons, but with more triangles the computation becomes more intensive. Another aspect of
the mesh quality is related to limited numeric precision and the walking procedure in the
mesh. Triangles should be equilateral (close to be equilateral) or the Delaunay property
must be satisfied, otherwise issues with degenerative cases can be expected [72].

More formally the triangular mesh T is a triplet T = (V ,E,T ), where V is the set of
vertices, E is the set of edges e ∈ E, e = (vi, vj), vi, vj ∈ V , vi 6= vj , T is the set of triangles
T ∈ T , T = ({vi, vj , vk}, {ei, ej , ek}) where vi, vj , vk ∈ V , ei, ej , ek ∈ E, ei = (vk, vi),
ej = (vi, vj), ek = (vj , vk).

7.1.1 Finding a Convex Cover

A convex polygon P of convex cover is found as a convex hull of mesh triangles, i.e. mesh
of triangles’ vertices. Each polygon P is formed from a sequence of vertices V P , V P ⊆ V
and has associated set of mesh triangles T P , T P ⊆ T that are entirely inside the polygon
P , T ∈ T P , T ⊆ P . The procedure to find a convex polygon P is depicted in Algorithm 8.

A construction of a convex polygon is started from a (possibly random) triangle Tr,
which forms an initial convex hull. The hull is eventually extended by vertices that are
opposite to outer edges of associated triangles to the polygon, set Eopen. Such vertex
eventually extends the hull by one triangle. During the hull extension (convex hull) the
size of the hull is considered and vertex being added is eventually discarded. The proce-
dure is repeated until list of candidate edges Eopen is empty. An example of the algorithm
performance is shown in Figure 7.2.

The algorithm to find a convex polygon is used to find a convex cover. The set of
convex polygons is found by the randomized incremental procedure that selects a random
uncovered triangle that is extended to a convex polygon. The procedure is depicted in
Algorithm 9 and examples of found convex covers are shown in Figure C.1.

1The termination of the algorithm is guaranteed only for the angle 28.6◦ or smaller, however in practice
higher values can be used.
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Algorithm 8: Find Convex Polygon
Input: T = (V ,E,T ) - a triangular mesh ofW
Input: d - visibility range
Input: Tr - initial triangle, Tr ∈ T
Output: P (V P ,T P ) - convex polygon
V P ← Tr(V ), T P ← {Tr} // initial convex hull from Tr
Eopen ← {e|e ∈ Tr} // add all edges of Tr to the open list

Eclose ← ∅ // initialization of the close list

while |Eopen| > 0 do
e? ← random(Eopen) // select random edge from the open list

T ? ← T incident with e? ∧ e? ∈ T (E) ∧ T /∈ T P

v? ← v such that v /∈ V P ∧ v ∈ T ? // select possible candidate vertex

C ← convex hull(V P , v
?, d) // try to extent the convex hull

if T ? is entirely inside C then
V P ← C, T P ← T P ∪ {T ?}
Eopen ← Eopen ∪ {e|e ∈ T ?(E) ∧ e /∈ Eclose} // add edges to Eopen

else
Eclose ← Eclose ∪ {e|e ∈ T ?(E)}

Eopen ← Eopen \ {e?} // remove edge from the open list

Eclose ← Eclose ∪ {e?} // add edge to the close list

(a) a vertex being added to the
hull

(b) an extended polygon (c) final convex polygon and
associated triangles

Figure 7.2: An example of convex polygon determination.

Algorithm 9: Find Convex Cover
Input: T = (V ,E,T ) - a triangular mesh ofW
Input: d - visibility range
Output: P = {P1, . . . , Pn} - set of convex polygons (convex cover ofW)
U ← T // uncovered triangles

while |U | > 0 do
T ← select random triangle from U
P (V P ,T P )← find convex polygon(T , d, T )
P ← P ∪ P (V P ,T P )
U ← U \ T P
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7.1.2 Determination of Coverage of the Ring

A convex cover of the workspaceW together with a triangular mesh ofW are utilized in
finding a coverage of the ring. Each triangle lies at least in one convex polygon, therefore
all such convex polygons are associated to each triangle. Nodes of the ring are insideW ,
hence each node ν is at least inside one triangle. An approximation of the continuous sens-
ing along the ring is based on the computation of coverage along a straight line segment s
of two directly visible points. Incident convex polygons with a segment s are determined
from the incident triangles, which are found by the visibility walk in a triangular mesh.
An example of segment coverage is shown in Figure 7.3.

(a) incident triangles (b) incident convex polygons,
d=50 m

(c) incident convex polygons,
d=4 m

Figure 7.3: An approximation of the continuous sensing along the line segment for the
visibility range d, the triangular mesh contains 2266 triangles, map jh.

The coverage of a ring is determined in four steps.

1. A sequence of points (p1, p2, . . . , pn, pn+1), where p1 = pn+1 for the closed ring, rep-
resenting the ring is found by the approximation of the shortest path between each
neighbouring nodes of the ring.

2. For each segment of neighbouring points si = (pi, pi+1) incident triangles are deter-
mined by the visibility walk in a triangular mesh. A set Tr is the union of all such
incident triangles.

3. For each pi all incident triangles are found2 and added into Tr.
4. The current coverage of the ring is a set of covered triangles Tc that is determined

from the convex polygons. For each Ti ∈ Tr all associated convex polygons Pi =
{Pi,1, . . . Pi,n} are used to find the set Tc,

Tc =
⋃

Ti∈Tr

⋃
Pi,j∈Pi

{T |T ∈ Pi,j}. (7.1)

Remark about Coverage and Continuous Sensing

A visualization of triangle coverage is shown in Figure 7.4, the color of a triangle indicates
area of the covered part (area of union of all associated convex polygons). The highest cov-

2 Necessity of this step depends on implementation of the walking procedure, because it can pass only
triangles in the direction from pi to pi+1. In fact, all incident triangles can be found during determination of
the first passed triangle in the direction.
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erage is in red, while the smallest is in blue. However it seems naturally to place guards
inside parts with the largest coverage (e.g. to find an approximate solution of the AGP), to
cover the whole free space ofW from the watchman route it can be better to prefer parts
with smaller coverage. For the WRP with continuous sensing the colors should be inter-
preted with a different intention. The red parts will likely be covered from other parts,
while the blue parts (rooms) have to be covered explicitly. In the context of the watchman
route, red parts will be mostly covered from the path to visit the blue parts (rooms).

(a) (b) (c)

Figure 7.4: Visualization of triangles according to area of associated convex polygons,
triangular mesh with 2266 triangles, unrestricted visibility range: (a) convex cover; (b)
triangle coverage of a convex cover; (c) triangle coverage for the convex cover created
from all triangles.

7.2 SOM Adaptation Procedure for the WRP

The proposed adaptation procedure for the WRP is based on a triangular mesh ofW and
a convex cover of W , in which convex polygons have associated triangles of the mesh.
The centroids of the triangles are used as attraction points similarly to cities in the TSP
algorithm. The problem is to find a route to “see” all triangles, therefore it is not necessary
to visit all triangles. The adaptation rule is modified to do not place a node unnecessary
close to an attraction point pa. An alternate point is determined and used instead of pa if
the node would be closer to pa than the visibility distance d after the adaptation. A schema
of the adaptation procedure is depicted in Algorithm 10.

The algorithm is similar to the adaptation procedure for the TSP, the main difference is
in consideration of the coverage, all SOM properties (G, f, µ, α, k) are same. The current
coverage is represented by a set of triangles T c. At the beginning of each adaptation step,
a coverage of the current ring is determined. After that, triangles are presented to the
network in a random order and nodes are adapted only for uncovered triangles. A winner
node is selected according to its distance to the centroid pa of the presented triangle T .
The distance is found as a length of the approximate shortest path from the node to pa.
If a winner node is selected then triangles of all associated convex polygons P c to the
triangle T are added to T c, which means the ring is not adapted to these triangles in the
current adaptation step. Also the adaptation is performed only if the winner node is not
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Algorithm 10: WRP Adaptation Procedure
Input: T = (V ,E,T ) - triangular mesh ofW
Input: P - set of convex polygons associated to triangles (convex cover ofW)
Input: (k,G, µ, α) - parameters of SOM
Output: (ν1, . . . , νM ) - nodes representing a route
r ← initialization // creation of ring of nodes

repeat
I ← ∅ // set of inhibited nodes

Tc ← triangles covered by the current ring r // ring coverage

foreach T ∈ Π(T ) do // select T from a random permutation of T

if T /∈ Tc then
pa ← centroid(T ) // attraction point

ν? ← select winner node to pa, ν? /∈ I // approx. the shortest path

P c ← {all associated convex polygons to T}
if ν? /∈ P, P ∈ P c then

adapt(ν?, pa)

T c ← T c ∪ {T |T ∈ P, P ∈ P c}
I ← I ∪ {ν?} // inhibit the winner node

adaptation to triangles
G← (1− α) ·G // decrease the gain

until all triangles are covered by the current ring

in some polygon3 of P c.

To avoid placement of nodes unnecessary close to the attraction point pa, the adapta-
tion rule adapt is modified to find an alternate point for the adaptation. Assume a winner
node ν that is being adapted to the centroid pa of the triangle T and let T has associated
convex polygons P c. An approximation of the shortest path from ν to pa is a sequence of
points (v1, . . . , vk), where v1 = ν and vk = pa. The alternate point is found as the farthest
intersection point of the segment (vk−1, vk) with P ∈ P c from pa, see Figure 7.5.

(a) (b) (c)

Figure 7.5: An example of alternate points for a different node and the same attraction
point, the attraction point is the centroid of the small triangle inside associated convex
polygons, red line segments represent an approximation of the shortest path.

3A node can be in such polygon due to its movement during adaptation to another triangle.
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An example of the algorithm performance is shown in Figure 7.6. In last thirty steps, a
shape of the ring is almost same and winner nodes are moved towards uncovered parts
ofW , while coverage of the ring is preserved.

(a) step 8 (b) step 16 (c) step 48

(d) step 59 (e) step 67 (f) step 73

(g) step 81 (h) step 95 (i) step 111

Figure 7.6: Performance of the SOM algorithm for the WRP, map jh, triangular mesh with
1417 triangles, 100 convex polygons of convex cover for the unrestricted visibility range.

An important aspect of the used triangular mesh should be noted. The number of tri-
angles can be relatively high. For example the typical number of triangles is around one
thousand for high visibility range and several thousands for visibility range one meter
for examined environments presented in the previous chapters. The high number of tri-
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angles requires more computational time to select winner nodes, especially for the first
adaptation steps. Two times more nodes than cities is recommended in [242], which is
needlessly high for the WRP adaptation, because many triangles are covered from the ring
and they are never really presented to the network. The number of nodes can be lower
and should correlate with the number of convex polygons rather than to the number of
attraction points (centroids of triangles). For high visibility range unnecessary nodes only
increase computation burden, because winner nodes are selected from larger set. After
several adaptation steps, the ring covers majority ofW , thus a winner node is determined
only for few uncovered triangles. It means the winner selection is less computationally
demanding. The quality of solution is not affected if the ring contains sufficient number
of nodes.

Also another aspect of the WRP algorithm with relation to the TSP variant should be
noted. It is not necessary to precompute the visibility graph for cities, because alternate
points are computed during node adaptation. Instead of the approximate shortest path
between a node and the city, the approximation of shortest path between two arbitrary
points described in Section 5.2.4 is used, hence only shortest paths between map vertices
are utilized.

7.3 Multiple Watchmen Route Problem - MWRP

An extension of the previous algorithm for the WRP to solve the MWRP is similar to
extension of the TSP to the MTSP. The main difference is that the MWRP formulation does
not consider a common depot, a solution of the MWRP consists of a set of independent
patrolling routes.

The flexibility of the SOM approach allows extension to address both MWRP variants:
with and without the common depot. The adaptation procedure for both variants is de-
picted in Algorithm 11. The MinMax criterion is considered in the same manner like in
the MTSP, particularly by weighting of distance between the node and the attraction point
to prefer selection of a node from shorter rings. However the winner node is selected ac-
cording to the attraction point, the node can be then adapted to the alternate point like in
the WRP approach.

7.3.1 MWRP - Independent Patrolling Routes

The algorithm for the problem variant without the common depot is almost identical to
Algorithm 10, the only difference is maintenance ofm rings formwatchmen and determi-
nation of ring lengths to preferred selection of nodes from shorter rings. The first foreach
loop of Algorithm 11 is not considered in this MWRP variant.

An example of the algorithm performance is depicted in Figure 7.7. It is shown that
rings are separated in the first steps, and rings are expanded after 50 adaptation steps. The
solution is almost found in the step 67, but additional 29 steps are necessary to complete
coverage. The entry to the room is filed in same cases, because in final stages several
attraction points from the same room are presented to the network. This imperfection
does not affect the separation of the routes as it is negligible in comparison to a length of
the route.
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Algorithm 11: MWRP Adaptation Procedure
Input: T = (V ,E,T ) - triangular mesh ofW
Input: P - set of convex polygons associated to triangles (convex cover ofW)
Input: m - number of watchmen
Input: cd - common depot
Input: (d,G, µ, α) - parameters of SOM
Input: δ - maximal allowable distance to cd
Output: {r1, . . . , rm} - routes represented by rings
initialization // create supporting structures

R← {r1, . . . , rm} // create rings

repeat
I ← ∅ // set of inhibited nodes

error ← 0
Tc ← all triangles covered by the current rings R
foreach r ∈ R do // adapt each ring to the depot

ν? ← select winner node from r to cd, ν? /∈ I
adapt(ν?, cd) // adaptation to the depot

error ← max{error, |ν?, cd|}
I ← I ∪ {ν?} // inhibit the winner node

adaptation to the depot - only for the depot variant

foreach T ∈ Π(T ) do // Π(T ) is a random permutation of triangles

if T /∈ Tc then // T is not already covered
a← centroid(T ) // attraction point

ν? ← select winner node to a, ν? /∈ I
P c ← {all associated convex polygons to T}
if ν? /∈ P, P ∈ P c then

adapt(ν?, a)

T c ← T c ∪ {T |T ∈ P, P ∈ P c}
I ← I ∪ {ν?} // inhibit the winner node

adaptation to triangles

until (all triangles are covered) ∧ (error < δ)

7.3.2 MWRP with the Common Depot

To attract rings to the common depot a winner node from each ring is selected and moved
towards the depot. The alternate point is not determined in the adaptation procedure
for the depot, because the depot is a point, which have to be visited, therefore the error
variable is maintained like in the MTSP. An example of the algorithm performance is
shown in Figure 7.8. Found routes are of course, due to the depot, longer than in the case
of the MWRP without a depot.
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(a) step 8 (b) step 14 (c) step 31 (d) step 50

(e) step 54 (f) step 67 (g) step 82 (h) step 96

Figure 7.7: Performance of the SOM algorithm to solve the MWRP without a common
depot, map jh, triangular mesh with 1417 triangles, 100 convex polygons for unrestricted
visibility range, lengths of found routes are 37, 44 and 35 meters.

(a) step 16 (b) step 30 (c) step 52 (d) step 54

(e) step 62 (f) step 65 (g) step 84 (h) step 101

Figure 7.8: Performance of the SOM algorithm to solve the MWRP with the common de-
pot, map jh, triangular mesh with 1417 triangles, 100 convex polygons for unrestricted
visibility range, lengths of found routes are 43, 62 and 58 meters.
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7.4 Experiments

The proposed WRP adaptation procedure has been experimentally verified in a set of en-
vironments represented as polygonal maps and for a set of selected visibility ranges. Par-
ticular maps properties are depicted in Table 7.1, where the last column denotes the num-
ber of convex polygons of the convex polygon partition used for computation of the ap-
proximate shortest path. A convex polygon partition is found by Seidel’s algorithm [233].
The first four environments are maps of real buildings.

Map
Size No. No. No. Convex

[m ×m] Vertices Holes Polygons

jh 20.6 × 23.2 196 9 77
pb 133.3 × 104.8 137 3 50
ta 39.7 × 46.8 101 2 46

h2 84.9 × 49.7 1061 34 476
dense 21.0 × 21.5 288 32 150

potholes 20.0 × 20.0 153 23 75
warehouse 40.0 × 40.0 142 24 83

Table 7.1: Properties of environments, the first four maps represent real buildings.

For each environment and visibility range d a triangular mesh is created by the qual-
ity mesh generator [237] for the minimal required angle 32.5◦ and 25.0◦ for the map jh,
and the maximum triangle area. The area has been set experimentally according to the
circumscribed circle of the triangle, which radius is derived from d.

The first three maps (jh, ta and pb) are used in comparison of the proposed WRP al-
gorithm with a reference solution found by the decoupled approach as a solution of the
AGP and consecutive the TSP. The AGP is solved by the algorithm CPP, Section 4.3.1.
The CPP algorithm has been selected mainly due to its similarities with the supporting
convex cover of the proposed WRP algorithm. The TSP is solved exactly by the Concorde
solver [16] and by the proposed SOM algorithm with the approximate shortest path, Sec-
tion 5.2.2, particularly with the full path refinement (pa) variant and the error stop con-
dition. The same parameters from Table 5.2 are used for both SOM algorithms: TSP and
WRP. The only exception is the number of neurons, which has been set individually for
each problem in case of the proposed WRP algorithm. The supporting approximation of
the shortest path in the WRP algorithm is the two points variant with the full path refine-
ment, Section 5.2.4.

Both the SOM algorithms are randomized, therefore each particular problem is solved
20 times and their performance is compared by the percentage deviation to the reference
path length of the mean solution value, PDM = (L−Lref )/Lref ·100%, and the percentage
deviation from the reference of the best solution value (PDB), where Lref is the length of
the path found by Concorde.

Experimental results are presented in Table C.1. The best solutions of selected problems
found by both approaches (WRP and AGP+TSP) are presented in Figure C.2 and several
additional solutions of the WRP in Figure 7.9.

However found solutions are not compared with exact solutions, regarding the fig-
ures one can expect that solutions (for high visibility ranges) are very close to optimum.
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(a) map warehouse, d = 10 m (b) map potholes, d = 10 m (c) map jh, d = 1 m

(d) map ta, d = 10 m (e) map ta, d = 2 m (f) map pb, d = inf

(g) map h2, d = 10 m (h) map pb, d = 10 m

Figure 7.9: WRP, selected solutions for various visibility range d.

Lengths of found routes by the proposed WRP algorithm are always shorter than solu-
tions of the TSP found by the SOM adaptation procedure. If the va-1 path refinement
variant of the SOM adaptation procedure for the TSP is used, solutions are found about
twenty percents faster and lengths of found paths are longer about 0.5% at maximum.

The required number of adaptation steps of the WRP algorithm is more than one hun-
dred and for the map pb and d=1 m the algorithm has been terminated after 180 steps.
It means that the found path does not provide the full coverage, the over all coverage
is more than 99.9% and in the worst case it is higher than 98.4%. The convergency issue
can be caused by two factors. At first, the number of used neurons is low. The second is
related to the SOM parameters used that are probably not well suited for problems with
high number of triangles. For the pb problem with d=1 m it means that 14 462 triangles
have to be covered.
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Required Computational Time

All algorithms have been implemented in C++ and compiled by the G++ 4.2 compiler
with -O2 optimization flags. All experiments have been performed within the same com-
putational environment using single core of the Athlon X2 5050e at 2.6 GHz CPU, 2 GB
RAM running FreeBSD 7.1. The required computational time the algorithms depends on
the number of neurons, which is related to the number of triangles (WRP) and guards
(AGP+TSP), therefore average values of T for the selected numbers of neurons are pre-
sented in Figure 7.10

The presented times do not include computation of all supporting structures. Con-
struction of the convex cover from the triangular mesh, takes a fraction of second for high
visibility ranges and less than two seconds for a triangular mesh with seven thousands
triangles. A triangular mesh and a convex polygon partition is found in less than one
hundred milliseconds, also supporting visibility graphs are found in a fraction of second.
Regarding the time to solve the WRP or the TSP, required computational time to create
these structures is negligible. The most time consuming preparation step is computation
of all shortest path between map vertices, the required time is included in the presented
results, and also it is included in T in Table C.1.
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Figure 7.10: Required computational time of the SOM algorithms.

MWRP variants

An application of the proposed adaptation procedure to address the MWRP variant with
a common depot is demonstrated by several examples of found solutions in Figure C.3.
The performance is not explicitly compared with a reference method. The expected per-
formance of the algorithm should be similar to the WRP and the MTSP algorithm, which
has been compared with the GENIUS heuristic in Chapter 5.

If the MWRP is solved without the common depot, independent patrolling routes are
found, see Figure C.4.
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7.5 Discussion

A new algorithm to find an approximate solution of the WRP and MWRP with restricted
visibility range in a polygonal domain have been proposed in this chapter. An algorithm
for the MWRP with d-visibility in a polygonal domain has not been found in literature,
thus the proposed algorithm is probably the first soft-computing algorithm for this kind
of problems.

The proposed SOM procedure is based on the geometrical interpretation of neurons
weights that are considered as nodes in a polygonal domain. The interpretation is the
main motivation for applied supporting geometrical structures, which are essential for a
reasonable computational requirements. The ring of nodes represents the watchman route
that evolves in a polygonal domain, the nodes are moved towards to the attraction point.
Four main issues are addressed by the supporting structures: selection of the attraction
point, a determination of a path in order to select a winner node, a node movement to-
wards the attraction point, and a computation of the ring coverage.

Despite the fact that the SOM procedure is relatively simple, the proposed adaptation
procedure for a polygonal domain W becomes relatively complex, because of structures
and algorithms to support path and visibility queries. The supporting structures and al-
gorithms are summarized in the following list:

• a convex partition ofW ,
• a convex cover ofW ,
• a triangular mesh ofW ,
• the visibility graph,
• all the shortest paths between vertices ofW ,
• a point-location algorithm,
• an approximation of the shortest path,
• the straight walking algorithm in a triangular mesh and a convex partition.

On the other hand, the advantage of these structures and algorithms is their simplicity
and computational feasibility.

The proposed adaptation procedure has been experimentally verified in several envi-
ronments, which represent real indoor environments, and compared with the decoupled
approach based on solutions of the AGP and the related TSP. According to the experimen-
tal results, the proposed algorithm provides better solutions (from the length of the tour
point of view) than the decoupled approach based on the CPP algorithm and the SOM
algorithm for the TSP. Regarding the results presented in Chapter 4 the quality of found
solutions by the proposed BP algorithm is competitive with the proposed direct solution
of the WRP.

However the algorithm is able to find better solutions than the decoupled approach,
it can be improved in two aspects. At first, the performance of the algorithm is relatively
poor for small visibility ranges, especially in comparison to outstanding results for high
visibility ranges. The worse performance can be caused by the used convex cover, which
does not provide good alternate points. Moreover it can also be caused by a node move-
ment towards another alternate point. The attraction points are presented in a random
order. The presentation can be eventually modified to consider the triangle coverage, to
prefer triangles with small coverage, see Figure 7.4. Such triangles have to be covered
explicitly, because they cannot be covered from paths to other parts of the environment.
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The second aspect relates to the used SOM procedure [243] and used parameters, Ta-
ble 5.2. Different values of parameters or modification of the neighbouring function can
decrease the required number of adaptation steps and possibly improve the convergency.
The adaptation procedure can be more sophisticated, e.g. it can use the local search strat-
egy to select the winner node, proposed in the Co-Adaptive net algorithm [56], to avoid
unnecessary computation of the node–point distances. Also the used number of neurons
is fixed for the whole adaptation. Higher number of neurons is not necessary after rings
are expanded, because larger portion of the free space is covered by the ring and not by
the nodes. A consideration of dynamic number of neurons, like in [214] can be helpful. Be-
sides, so-called competition strategy described in [214], can be considered in the proposed
WRP algorithm. The strategy uses the nearest edge of the ring instead of the nearest node
in the competitive rule, thus it can be useful to attract the ring into parts that are close to
the watchman route, but nodes of the ring are relatively far.

In addition to proposed improvements, one of the future work is a comparison of the
proposed (or improved) SOM algorithm with the heuristics approach [211], which is sim-
ilar in an aspect of route reduction. It uses an initial AGP solution and reduces the length
by moving the guards, while the proposed WRP algorithm uses attraction points and
finds alternate points. The main difference of the proposed algorithm is that instead of
sophisticated heuristics for the AGP, a simple underlying structure (a triangular mesh) is
used. Also the proposed SOM procedure provides flexibility to addressed the restricted
visibility range and variants of the WRP.

With respect to the quality of found solutions for small values of d it should be mention
that for small visibility distances the d-sweeper route problem is very close to the coverage
task by a mobile robot, which is solved by algorithms based on a cell decomposition and
explicit routing shapes in the cells [11]. These algorithms seem to provide more suitable
solutions for a real robot than an approximate solution of the TSP.

The MWRP with and without a common depot have been solved for various number
of watchmen in different environments. The most interesting aspect of the SOM based
MWRP algorithm in relation to the path planning is non-crossing paths. Similarly to the
MTSP the SOM adaptation procedure provides non-crossing path, however with lower
frequency than in the MTSP.

The proposed algorithm addresses variant of the WRP that can be found as d-sweeper
route problem in the literature. An application of the algorithm to address the so-called
d-watchman route problem is straightforward, only triangles of convex polygons that are
connected with the border ofW have to be considered.

Despite of mentioned imperfections, the proposed approach combines the self-organi-
zing principle and supporting geometrical structures to address problems studied in the
computational geometry, thus it can be probably applied for other problems from the class
of hybrid visibility problems. The most interesting problem is the vision points problem or
the VPP that aims to combine the sensing and motion costs.
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Chapter 8

Multi-Goal Path Planning with
Trajectory Generation

The SOM adaptation procedures for the multi-goal path planning problem have been
presented in the previous chapters. Moreover the variants with the MinMax criterion
have been considered for a group of cooperating mobile robots. At first, the shortest-
path roadmap approach has been applied for the TSP problem formulation, then navi-
gation functions based on the APF have been used. These approaches satisfy kinematic
constraints for a robot with differential nonholonomic drive and additional motion con-
straints can be satisfied if a trajectory is considered. Velocity or acceleration limits con-
straint the velocity profile that can provide more accurate estimation of the required time
to travel. The velocity profile can be used to consider cost of the path with respect to
additional criterions1. In addition, a trajectory can be used to guarantee coordination of
motion of several mobile robots. The crossing paths do not necessary mean collision, but
the coordination cannot be guaranteed without known position of the robot in time.

Trajectories can provide more accurate plans, however the problems of trajectory gen-
eration and trajectory following can be considered as a part of the control theory, where
problems are studied as state models and the optimal control is one of the desired goals.
On the other hand, problems of the multi-goal path planning considering obstacles and
cooperating mobile robots studied in this thesis are related to the Artificial Intelligence
domain. Although these two domains are quite different, nowadays techniques of the
motion planning try to find trajectories that can be directly used for controlling the robot.
The RRT technique is an example of such approach, which is also able to find trajectories
for a robot with complex kinematics or for several robots.

This chapter is dedicated to consideration of the trajectory generation during the SOM
adaptation. The examined problem is the MWRP, because in this problem desired goal
locations are not prescribed, hence trajectory can freely evolved in the free space. The
main motivation of the studied problem of trajectory generation in the multi-goal path
planning problem is to find more accurate plan. Besides, such technique can provide paths
for complex robots with multiple bodies and additional motion constraints.

The rest of the chapter is organized as follows. The next section describes preliminary
results of consideration of velocity profiles during the multi-goal path planning. The re-
sults are discussed in Section 8.1.3 where an idea of combination of the SOM adaptation

1 For example in [149] authors reported up to 10 % energy savings by their trajectory generation compared
with the energy optimal trapezoidal velocity profile and loss-minimization control.
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procedure with trajectory generation is proposed. Section 8.2 is dedicated to the motion
planning where a new multi-goal motion planning algorithm called RRT–Pathext is pro-
posed. The adaptation procedure with a ring regeneration based on the RRT–Pathext is
described in Section 8.3, the procedure is applied to the WRP with trajectory generation.
The last section of the chapter is dedicated to discussion of future work.

8.1 Preliminary Work

Two types of velocities profiles have been considered in the preliminary study of the
multi-goal path planning. The first type of the profile is derived from the path curvature,
while the second type is based on the time optimal trapezoidal velocity control. Compu-
tation of the curvature requires first and second derivatives, therefore paths have to be
smooth. The trapezoidal profile is suitable for the turn-move motion along straight line
segments. In the next sub-sections, two methods to find velocity profiles for given paths
are described. Both methods can be considered as time optimal, because they maximize
forward velocity of the robot along the path.

8.1.1 Velocity Profile for Smooth Paths

The first approach considering the acceleration limits during the SOM adaptation has
been proposed in [86]. It is based on spline curves describing the robot trajectory. The
trajectory is formed from two splines x(u) and y(u), where u is the parameter along the
curve. Each spline consists of several segments - cubic polynomials. Knots are tangent
points of two neighbouring segments with continuous derivatives. A path found as a ring
of nodes is used to define a curve. The spline curve is determined by the start point of the
path, the end point of the path, their derivatives, and knots. Knots are selected to fit the
points of the path, except the start and the end point of the path. To fully define the spline,
additional points are determined as an average point between two points of the path.

A velocity profile along the trajectory can be computed from the curvature and accel-
eration limits. The curvature is defined as

κ(u) =
x′(u)y′′(u)′′ − x′′(u)y′(u)

3
√

(x′(u)2 + y′(u)2)2
. (8.1)

The maximal forward velocity v can be computed from v = ωmax/κ, where ωmax is the
maximal radial speed. Considering these relations the velocity profile can be computed in
following steps.

1. Local extremes of the curvature are determined and denoted as {p1, . . . , pn}. The
robot has to moved with allowed maximal speed due to restricted radial velocity in
these points. The curve radius is bigger before and after these points, therefore the
robot can move faster.

2. For each pi the maximal velocity profile is determined. The profile has shape of ’U’
(or ’V’), because the robot tangentially decelerates before pi and accelerates after pi
with respect to the acceleration limits.

3. Velocity profiles for the initial and final points of the path are obtained in similar
manner.

4. The highest allowable overall velocity profile is determined as the minimum of all
profiles.
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An example of such velocity profile is shown in Figure 8.1.
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Figure 8.1: A path and velocity profiles along the path (parameter u).

If it is necessary to consider the tangential and the radial accelerations, e.g. to con-
sider limited friction force and to satisfy the pure rolling condition of the robot wheels,

the overall acceleration can be bounded by a =
√
a2
tang + a2

rad, where atang is the tangen-
tial acceleration and arad is the radial acceleration. The forward velocity v can be then
determined from arad = v2κ and the above described procedure can be used to find high-
est allowable profile. Consideration of the friction force is necessary for very fast robots,
where limits are not in motors or mass of the robot, e.g. robots in the robotic soccer [87].

The presented approach applied to paths composed from straight line segments suffers
by the following issue. The path is transformed into spline curves x(u), y(u), which are
smooth, but they can collide with obstacles. Smooth navigation functions may be used,
e.g. the harmonic potential field functions presented in Section 6.1.2, to avoid the issue.

8.1.2 Velocity Profile for Straight Line Segment Paths

If a robot is able to turn at a place, e.g. it has differential nonholonomic drive, the most
straightforward control strategy is following the line segment and turning at the end of
the segment in the direction of the next segment. Such motion strategy can be called turn-
move and it is well suited for the shortest-path roadmap based on the visibility graph.
The velocity profile for one segment has trapezoidal shape. The robot has zero forward
velocity at the beginning of the segment, then the velocity is increased up to the maximal
speed of the robot, while the maximal allowable acceleration is considered. The robot
decelerates before the end of the segment and it stops at the end. The robot turns with
similar profile for the radial velocity, however acceleration and deceleration phases are
negligible for robots like the P3AT [3].

The TSP with the cost of a path between cities computed as the travel time has been
studied in [263]. The travel time has been computed from the trapezoidal velocity profiles.
The GENI heuristics algorithm for the TSP has been modified to consider a turn angle at
cities. The modification is necessary, because the cost of the route is not affected only by
costs between two cities, but the angle depends on the previous and the next city of the
planned route.
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Required times to travel found by the modified algorithm has been compared with the
times to travel for the route found by the original algorithm. The comparison of these
times has been performed for various problems and several maximal radial accelerations.
The robot has been modeled with following parameters: the maximal forward speed
1.5 m.s−1, the maximal radial velocity 6 rad.s−1, the maximal forward acceleration and
deceleration 1 m.s−2, the maximal radial acceleration in the range from 0.1 to 7 rad.s−2.
Experimental results are shown in Figure 8.2 as dependency of the time ratio ϑ on the
radial acceleration ψ. Four problems have been examined in the comparison, the num-
ber of cities is denoted as n. The results indicate that for small problems and high radial
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Figure 8.2: Comparison of TSP solutions according to maximal allowable radial accelera-
tion.

acceleration it is not necessary to consider angles and velocity profiles during the tour
construction and its improvement, the quality of the solution is about one percent better
if velocity profiles are considered. For the problem with 113 cities the solution found by
modified algorithm is more than about ten percents better.

Similar comparison has been presented in [185], where paths from the shortest-path
roadmap and from the APF approach have been compared. The time to traverse the com-
plete tour has been computed for the turn-move strategy in the case of the roadmap, while
velocity profiles for smooth paths, Section 8.1.1, has been used for the APF. However the
smooth paths are longer than the sequences of the straight line segments, the overall time
to travel the tour is about three percents lower.

8.1.3 Discussion of Preliminary Work

The preliminary experiments show possible improvement of quality of solution if a trajec-
tory is considered during the multi-goal planning. The more important aspect of consid-
ering trajectory is a planning of a feasible path for a robot with different kinematics, e.g.
car-like robot or complex robots like [148]. The successful application of navigation func-
tions in the SOM adaptation procedure described in Chapter 6 motives to combine the
adaptation procedure with a motion planner to satisfy various kinematic or kinodynamic
constraints.
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The SOM adaptation procedure can be used for high dimensional input, so it can be
possibly used for high dimensional configuration space where nodes can represent points
in C, or more precisely points in Cfree. The main issue of such approach relies on the
efficient determination of the distance between a node and a goal, which is exactly the
same problem in any randomized sampling based motion planner for high dimensions.
Due to this difficulty the first step of the multi-goal motion planning with SOM is based on
the following ideas of combination of the trajectory generation and the route optimization.

• The SOM adaptation procedure can be used as the route optimization procedure.
• The ring of nodes can be considered as a sequence of points in R2, the ring (path) is

two dimensional projection of the trajectory from the high dimensional C.
• The SOM approach provides an intuitive way (simple competition rule) to consider

the MinMax criterion in the multi-goal planning for several robots. The cooperative
motion can be addressed by the SOM competitive rule, which prefers nodes from
shorter rings.
• The ring can be used to determine a sequence of visits of goals.
• A trajectory to visit the found sequence of goals can be found by a motion planner.

It is necessary to consider the multi-goal problem in order to select a suitable mo-
tion planning algorithm to find trajectories. Mainly because the classical motion planning
problem deals only with the problem of finding a trajectory between two points. The mo-
tivation is also to consider various motion constraints. Regarding the review of the state
of the art the RRT algorithm seems be the most suitable approach. Moreover the RRT–
Path algorithm introduced in [264] by Vonásek and Faigl uses an auxiliary path to guide
the randomization process of the selection of new configuration, therefore a ring of nodes
can be used as the auxiliary path. The RRT–Path is described in the next section, where a
new algorithm called RRT–Pathext is proposed to solved the multi-goal motion planning
problem. The algorithm is then used in the SOM adaptation procedure to find a solution
as a trajectory in the WRP, Section 8.3.

8.2 RRT–Pathext Algorithm - Multi-Goal Motion Planner

8.2.1 RRT–Path Algorithm

One of the main issues of RRT algorithms is the narrow passage problem. The RRT–Path
algorithm tries to avoid the problem by a guided sampling of new configurations in C
along an auxiliary path, it has been proposed by Vonásek in [263]. The algorithm is princi-
pally same as the original RRT algorithm, but the performance is improved by the guided
sampling. For a given initial and desired configurations an auxiliary path has to be found.
Let the path is given as a sequence of points (p1, . . . , pn), where the first point is close to
the starting position of the robot and the last point is close to the goal. A schema of the
RRT–Path is depicted in Algorithm 12.

The algorithm performs inK steps at maximum. A random configuration qrand is sam-
pled and the nearest configuration qnear of the tree is found in the each step. According to
the model of the robot motion the most suitable control input is selected from the set of
possible control inputs U to extend the tree from qnear towards qrand. If the tree can be ex-
tend (qnew is in Cfree) and a trajectory from qnear to qnew is feasible (the robot movements
satisfies required constraints) qnew is added to the tree and qnear is marked as the parent
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Algorithm 12: RRT–Path
Input: C - configuration space of the robot
Input: qstart, qgoal - initial and desired configurations
Input: P = {p1, . . . , pn} - an auxiliary path, where pi ∈ R2

Input: K - maximal number of iterations
Input: g - temporal goal bias
Input: U - set of possible inputs of robot control
Input: δ - minimal distance of the found trajectory to the goal

i← 0
T.add(qstart) // add initial configuration to the tree

qt ← p1 // use first point of the auxiliary path as temporal goal

while i < K do
if temporal goal is reached then

P ← P \ {qt}
qt ← next(P ) // select next temporal goal

if imod g = 0 then // every g-th step used qt
qrand ← qt

else
qrand ← select random configuration in C

qnear ← select the nearest neighbour configuration from the tree T to qrand
qnew ← extend qnear towards qrand
if qnew can be connected to qnear then

if ρ(qnew, qgoal) ≤ δ then
break // terminate tree growing procedure

T.add(qnew)

i← i+ 1 // increase step counter

of qnew. The algorithm is terminated if a configuration of the tree is at sufficient distance
to the goal, less than δ.

A point of the auxiliary path (called temporal goal) is used instead of random con-
figuration every g iterations, this technique is similar to the goal bias variant of the RRT.
The main difference is in the moving of the temporal goal qt along the auxiliary path P .
A robot workspace is considered as planar environment, and even for the high dimen-
sional C (e.g. robot position, orientation and its velocities or accelerations) the auxiliary
path is two dimensional. Therefore qt uses only two coordinations (x, y) of the point at
the auxiliary path. If the tree contains a configuration sufficiently close to a point p from
P , p is removed from P . The auxiliary path is used as a guideline of the tree growing
process and it represents knowledge about the environment.

The RRT–Path has been compared with three RRT algorithms in [264], namely with the
original version of RRT, RRT-Bidirect and RRT–Blossom. The RRT–Path algorithm signif-
icantly outperforms all other algorithms in the length of the found path, size of the tree
as well as required computational time. Examples of solutions are shown in Figure 8.3.
In addition to the comparison of the RRT algorithm variants, several methods to obtain
an auxiliary path have been evaluated. The Segment Voronoi diagram, Visibility-Voronoi
diagram [267] and the PRM [146] methods have been used to find an auxiliary path. These
methods provide clearance around the path that allows the RRT–Path algorithm to grow
around the path. The Visibility-Voronoi diagram with higher clearance provides better re-
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(a) original RRT, N=2 542 (b) RRT–Blossom, N=44 573 (c) RRT–Path, N=89

Figure 8.3: RRTs and found trajectories, N is the number of tree vertices.

sults than with lower clearance. The visibility graph has not been used, because it does
not provide sufficient clearance and the performance of the RRT–Path algorithm is poor.

However the RRT–Path algorithm provides feasible trajectory from the start to the goal
locations (configurations), it cannot be directly used in the multi-goal planning problem.
The auxiliary path can be efficiently used only if it is the monotone polygonal path. Also
consideration of qt ∈ P can be too restrictive in cases where obstacle edges are part of
the auxiliary path, e.g. shortest-path roadmap. In such cases, qt can be part of the obstacle
edge, which can lead to grow the tree towards the obstacle. Such unsuccessful tree ex-
pansion can be repeated several times and a solution is not found in the given maximal
number of steps K. These issues are the main motivation of the proposed extension of the
algorithm described in the next section.

8.2.2 RRT–Pathext Algorithm

The idea to avoid undesired growing of the RRT–Path algorithm in a direction to obstacles
is based on an extension of the auxiliary path to an auxiliary corridor. A corridor supports
finding a path with required clearance, which can be more important than length of the
path [268]. It is exactly the case of the tree expansion process in the RRT–Path. If qt is
also sampled around the path (in Cfree) and not only at the path, the tree will more likely
expand into the free space rather than in a direction to the obstacle.

A triangular mesh of the free space of the robot workspaceW can be used to find a cor-
ridor with defined distance from the auxiliary path. The main advantage of the triangular
mesh is simple and feasible determination of the shortest path by Dijkstra’s algorithm.
The procedure to find an auxiliary path and its corridor in the triangular mesh is depicted
in Algorithm 13. The start and goal positions are added to the mesh and the auxiliary path
is found as the shortest path between two vertices in the mesh.

An auxiliary path with a corridor is the triplet (V aux,Eaux,T aux), where V aux is the
sequence of vertices representing the shortest path, Eaux is the sequence of edges ei such
that source(ei) = vi−1 and target(ei) = vi, and T aux is the set of triangles representing the
corridor. Each triangle T from T aux is associated to the closest vertex v of V aux, i.e. the
particular vertex v has associated a set of such triangles.

An initial auxiliary path can also be found as an approximation of the shortest path by
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Algorithm 13: Find an auxiliary path and its corridor
Input: T = (V ,E,T ) - a triangular mesh ofW
Input: pstart - a start position
Input: pgoal - desired goal position
Input: δ - corridor clearance
Output: P aux = (V aux,Eaux,T aux) - found auxiliary path with corridor

T ← extend T by points pstart and pend
Eaux ←find path from pstart to pend by Dijkstra’s algorithm in the graph G(E,V )
T aux ← ∅
foreach v ∈ V aux do

T aux ← T aux ∪ {T |at least one vertex of T is closer to v than the distance δ}

the algorithm proposed in Section 5.2.2 or by any path planning algorithm. If a path is
collision free, then the auxiliary corridor for the path can be found by Algorithm 14. The

Algorithm 14: Find an auxiliary corridor
Input: T = (V ,E,T ) - a triangular mesh ofW
Input: P - path as a sequence of points
Input: δ - corridor clearance
Require: P is collision free inW
Output: P aux = (V aux,Eaux,T aux) - found auxiliary path with corridor

T ← extent T by points pstart and pend
T incident ←find all incident triangles with the path P // use walking in trimesh

V incident ← {v|v ∈ T ∧ T ∈ T incident} // all vertices of triangles T incident

V aux ←use points of P as vertices of the auxiliary path // create vertices from P

Eaux ←set of segments (edges) of the path P // create edges from P

T aux ← ∅
foreach v ∈ V incident do

T aux ← T aux ∪ {T |at least one vertex of T is closer to v than the distance δ}

algorithm is similar to Algorithm 13, but at first all incident triangles T incident with the
path P are found. The path is collision free, therefore all incident triangles are found by
the walking in triangular mesh procedure for two consecutive points of the path. After
that, points of the path are added to the triangular mesh and the corridor is found like in
Algorithm 13, instead of V aux vertices of incident triangles are used.

In both algorithms, the desired clearance (width) of the corridor is only approximation
due to discretization of the triangular mesh. It is not an issue, because the corridor is used
to create random samples around the auxiliary path.

The temporal goal qt of the RRT-Path algorithm is substituted by the temporal point pt
in the RRT-Pathext algorithm. The distance map to the goal is used to maintain pt along
the auxiliary path. The map is a set of the shortest distances from each vertex of the mesh
to the goal vertex. If a new configuration qnew is added to the tree, the point pt is updated
by Algorithm 15. The idea of the distance to the goal is similar to the cost of the node
introduced in [256].

A new random temporal goal qt is randomly sampled inside the corridor around pt.
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Algorithm 15: Maintenance of temporal point pt along the auxiliary path
Input: T = (V ,E,T ) - a triangular mesh ofW
Input: distance map - all shortest path from each vertex v ∈ V to the goal
Input: P = (V aux,Eaux,T aux) - auxiliary path
Input: qnew - a new configuration added to the tree
Output: pt - new temporal point at the auxiliary path

pnew ← two dimensional (x, y) projection of qnew
T ← locate a triangle for pnew such that pnew ∈ T
d← ∅// set of distances from pnew to goal over vertices of T

foreach v ∈ T do
d← d ∪ {|(pnew, v)|+ distance map(v)}

d← mind // find minimal distance to the goal

pt ← find new point at the path P that is in d distance from the goal

A neighbourhood of pt along the path is defined by two parameters called horizons: back-
ward (hb) and forward (hf ). The sampling procedure is depicted in Algorithm 16.

Algorithm 16: Random sampling of temporal goal gt in an auxiliary corridor
Input: P = (V aux,Eaux,T aux) - an auxiliary path
Input: pt - temporal point at the auxiliary path
Input: hb, hf - forward and backward horizon
Output: qt - random temporal goal

pb ← pt 	 hb // aux. path point in hb distance from pt (or first pt.)

pf ← pt ⊕ hf // aux. path point in hf distance from pt (or last pt.)

pr ← select random point at the auxiliary path between pb and pf
v ← the closest vertex to pr, v ∈ V aux

T ← {T |T ∈ T aux and T is associated to v}
T ← select random triangle T according to area of triangles
p← random point inside the triangle T
qt ← p // use only (x,y)

Even though the proposed sampling procedure improves generation of a random con-
figuration, the configuration can be still undesirably close to obstacle, from which any
other configuration is in collision. If such a configuration is selected repeatedly (as qnear),
the growing process is stucked like in the RRT–Path. Inspired by viability concept [141],
state-space search technique is utilized in the RRT–Pathext. During the tree expansion
all possible feasible configurations are generated for qnear. These configurations are pre-
served and if the same qnear is selected again, only not already used configurations are
considered for the expansion. In the case qnear does not have any available configurations,
the parent configuration is considered for the expansion in similar manner. This technique
represents backtracking mechanism in a state-space search algorithm. Also instead of just
one qnear set of the nearest configurations can be used like in [256].

Finally, to find multi-goal trajectory, which can be possible closed (e.g. a watchman
route), it is necessary to split the trajectory into several parts. Such trajectories have to
be connected in order to get a final smooth path. Connection of two trajectories is also
necessary in the Bidirect variant of the RRT, in which two trees are grown, one from the
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start and another one from the goal. The problem is easier for the multi-goal path, because
the path is continuous and trajectories can be found sequentially. The goal configuration
of a trajectory can be used as the initial configuration of the next part of the final trajectory.
Because a final configuration can be in colliding direction with an obstacle, the trajectory
is rather found for a goal that is more forward at the route.

More formally a path is a sequence of points (p0, p1, . . . , pn) in Cfree. The path is split to
several consecutive parts (p0,i,j ,pi,j,k, . . . ,pl,m,o,pm,n,n), where pi,j,k = (pi, . . . pj , . . . , pk)
and n is the number of path points. Each part overlaps with next part, except the final part.
For a closed path p0 = pn, but the final configuration is not same as the start configuration,
because the RRT algorithm is stopped if the trajectory is in a sufficient distance to the goal.
Here, it is assumed that the robot stops at the final goal.

The RRT–Pathext algorithm is based on the RRT–Path algorithm, and the schema of
both algorithms is same. The extensions and differences are summarized in the following
list:

• A triangular mesh of the robot workspaceW is used as the supporting structure.
• The auxiliary path consists of the sequence of mesh vertices and corridor, which is

a set of mesh triangles.
• The temporal point pt at the auxiliary path is updated according to estimation of

the tree distance to the goal. The triangular mesh is used to find the distance map
to the goal. The distance map supports fast estimation of the distance from new
configuration to the goal.
• The corridor is used to sample new random configuration around pt, a neighbour-

hood of pt is considered.

The multi-goal motion planning based on trajectory partitioning can be used with the
RRT–Path algorithm, but the main advantage of the RRT–Pathext is fast convergence for
paths, which are incident with obstacles, e.g. a solution of the TSP on the complete visi-
bility graph.

8.2.3 Experimental Results

The performance of the proposed RRT–Pathext has been experimentally evaluated for a
set of random trajectories in the map jh, which contains many narrow passages, entrances
to rooms. The real computational requirements of the algorithm are crucial for its appli-
cation in the adaptation procedure, therefore required computational time is compared
with the approximation of the shortest path described in Section 5.2.4. Two variants of the
approximation over vertices of convex cells are examined: with and without considera-
tion of the incident vertices of edges crossed by the direct line segment from the start to
the goal point, the algorithms are referred as SP and SP-obstacles. The second variant is
used to find an initial auxiliary path, which is used in Algorithm 14. The examined set of
motion problems has been created as 1000 pairs of random initial and goal positions of
the robot inside free space of the map jh.

Because of intention to used the proposed RRT–Pathext algorithm in the combination of
SOM as a trajectory generator, which is expected to be computationally intensive, a point
robot is assumed. It allows to used the point-location algorithm to test if a random con-
figuration is in Cfree, which reduces the required computational time of the RRT–Pathext

two times in comparison to the library RAPID [110]. The nearest configuration of the tree
to the new random configuration is found by the MPNN library [279].
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The robot with differential nonholonomic drive with maximal forward velocity 0.6 m.s−1

and with wheel radius 0.05 m is assumed. Wheels are at distance 0.3 m, that means free
space of the map represents shrunk free space about more than fifteen centimeters. The
robot is controlled by the radial wheel velocities and only in the forward direction, the
set U has 24 different control inputs. The tree edge corresponds to the time interval of
one second and it is discretized into five samples. The supporting triangular mesh to de-
termine the corridor along the auxiliary path consists of 2506 vertices and 4536 triangles.
Associated triangles to the auxiliary path are at distance 1 m, the forward horizon is 1 m
and backward horizon is 0.2 m. A found trajectory is sampled per 0.1 m to form a polyg-
onal path. The minimal required distance of the planned trajectory to the desired goal δ
has been set to 0.15 m.

Experimental results are presented in Table 8.1. The RRT–Pathext algorithm has been
executed for several maximal number of steps K. The presented values represent average
values for 1000 paths. The column Time denotes the average required computational time
to find one path, the column Length is the average length of the found path. The fourth
column denotes speed of the algorithm in the number of found paths/trajectories per one
second. Next two columns are the average number of tree nodes and the average number
of steps per found path. The last column shows the number of iterations, for which a path
is not found in the maximal number of stepsK. All algorithms have been implemented in
C++, compiled by the G++ 4.2 with -O2 optimization flag and executed within the same
computational environment using a single core of the Athlon X2 at 2 GHz CPU, 1 GB RAM
running FreeBSD 7.1. Examples of found trajectories along auxiliary paths are depicted in
Figure 8.4.

Algorithm
Time Length Found paths Tree No. No.
[ms] [m] per second size Steps Fails

SP 8 µs 13.3 125 000 - - 0
SP-obstacles 13 µs 13.2 77 000 - - 0

RRT-Pathext, K = 400 30 13.8 33 63 69 26
RRT-Pathext, K = 1000 31 14.0 33 69 79 13
RRT-Pathext, K = 2000 31 14.1 32 71 87 4
RRT-Pathext, K = 5000 31 14.1 32 70 85 0
RRT-Pathext, K = 10000 31 14.1 32 67 91 0

Table 8.1: Performance of the RRT–Pathext algorithm.

The proposed RRT–Pathext algorithm provides thirty trajectories per seconds, which
seems be sufficient for real-time planning, but it is still significantly slower than the ap-
proximation of the shortest path. According to real computational time of the algorithm
it can be expected that possible solution of the multi-goal motion problem with the SOM
procedure will be found in tens of minutes instead of units of seconds. Expected per-
formance is not suitable for real application, but it allows preliminary experiments with
combination of SOM and RRT approaches.
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(a) trajectories for narrow
passage problems

(b) trajectories for 50 random
problems

(c) route is found in 420 ms and
trajectory in 745 ms

Figure 8.4: Example of found trajectories by the RRT–Pathext algorithm, the auxiliary path
is in red, the found trajectory is in green: (c) found trajectories for solution of the TSP.

8.3 Adaptation procedure with trajectory consideration

This section describes a naı̈ve approach to consider a trajectory generation during route
optimization process and it should be considered as a feasibility study. The selected prob-
lem is the WRP and the MWRP for a group of cooperating robots, mainly because fix-
points, which must be necessarily visited, are not prescribed, and solution (coverage) is
affected by the found trajectory. In Chapter 7, the SOM algorithms for the WRP/MWRP
have been proposed (Algorithm 10 and Algorithm 11) that are used in this feasibility
study. The main idea of the trajectory consideration can be summarized in the following
steps:

1. nodes are adapted to attraction points along the approximation of the shortest path,
2. the ring of nodes is used as the auxiliary path in the RRT–Pathext algorithm to find

a trajectory,
3. the trajectory is used to created a new ring of nodes by ring regeneration procedure,
4. the adaptation process is repeated for new presentation of triangles.

The ring regeneration means that nodes (weights) are placed at new positions without
adaptation process2, only 2D part of the configuration in C is used.

The adaptation procedure for the WRP with the RRT–Pathext ring regeneration is de-
picted in Algorithm 17. The first part of the algorithm is identical to Algorithm 10. The
RRT–Pathext algorithm is utilized in the ring regeneration that is performed after ireg
steps, because in early steps of the adaptation rings are very small, see Figure 7.7. The
ring of nodes is used to find a path by the approximation of the shortest path. The path
is split to several overlapping parts and for each part a trajectory is found, which is then
use to regenerate the ring. The ring regeneration requires a variable number of neurons
in each adaptation step.

For new nodes created by the sampling of the trajectory a convex cell of the supporting
convex partition have to be found in order to use the approximation of the shortest path.

2This technique has been used in the algorithm to solve the TSP with hierarchy of cities [88], in which a
ring of nodes is firstly adapted to small set of cities, then the number of nodes is increased and new adaptation
is performed for a problem with higher number of cities. The procedure reduces the required computational
time while the quality of solution is worse only about units of percents.
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Algorithm 17: WRP - SOM algorithm with the RRT–Pathext ring regeneration
Input:W - map, polygonal representation of the robot workspace
Input: T = (V ,E,T ) - a triangular mesh ofW
Input: P - set of convex polygons associated to triangles (convex cover ofW)
Input: (d,G, µ, α) - parameters of SOM
Input: ireg - step from when the ring regeneration is performed

r ← initialization // initial creation of ring of nodes

i← 0 // set the adaptation step counter

repeat
I ← ∅ // set of inhibited nodes

Tc ← triangles covered by the current ring r
foreach T ∈ Π(T ) do // select T from a random permutation of T

if T /∈ Tc then
pa ← centroid(T ) // attraction point

ν? ← select winner node to pa, ν? /∈ I // approx. the shortest path

P c ← {all associated convex polygons to T}
if ν? /∈ P, P ∈ P c then

adapt(ν?, pa)

T c ← T c ∪ {T |T ∈ P, P ∈ P c}
I ← I ∪ {ν?} // inhibit winner node

if i ≥ ireg then
path← ∅
foreach {νi, νi+1} ∈ r do

path← (path,path(νi, νi+1)) // where path constructs path in W
(p0,p1, . . . ,pn)← split path into several overlapping consecutive parts
qs ← ν0 // initial configuration

r ← ∅ // a new ring

foreach pi ∈ (p0,p1, . . . ,pn) do
t← rrt path ext(qs,pi) // plan trajectory from qs along pi

qe ← select configuration from t before trajectory end
r ← (r, sample(t(qs, qe))) // add trajectory points as new nodes

qs ← qe // used qe as new trajectory initial configuration

G← (1− α) ·G // decrease the gain

i← i+ 1
until (all triangles are covered)

The cell is found by the algorithm based on the interval trees [217]. It provides more than
four thousands queries per millisecond in the used computational environment, which is
sufficient in comparison to required computational time to get the trajectory.

The MWRP variant is pretty much same to the WRP algorithm, it differs only in main-
tenance of several rings, as it has been already shown in the previous SOM based algo-
rithms.

Examples of found trajectories during the WRP and MWRP adaptation procedures are
shown in Figure 8.5. Blue disks represent new winner nodes, the colored paths represent a
regenerated ring from the previous adaptation step, the thin black paths are current rings.
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(a) (b) (c)

Figure 8.5: Approximate solution of the WRP with the RRT-Pathext ring regeneration.

8.4 Discussion

Three methods to create velocity profiles for a group of cooperating robots in multi-goal
path planning problem have been presented:

• trajectory generation along a smooth path (spline curves or navigation functions
from APF),
• trapezoidal velocity profile for the shortest-path roadmaps,
• velocity profile found by the RRT–Pathext algorithm.

The proposed RRT–Pathext performs well in environments with narrow passages, and
it provides good real-time performance. However the used auxiliary path in the RRT–
Pathext is only planar, the experimental results show significant reduction in the required
size of the tree. Probably the guided sampling can also be helpful for high dimensional C.

The found trajectories of the solved WRPs are completely smooth, but they contain
several unnecessary loops. The trajectories are not satisfactory, but important lessons have
been learned. At first, the SOM adaptation procedure can be used for evolving trajecto-
ries. The SOM adaptation performs well in separation of trajectories into particular non-
overlapping paths. Sufficient number of nodes have to be used to respect smoothness of
the found trajectory with sufficient level of details. It also is necessary to consider only
local improvements of found trajectory by the RRT algorithm.

Consideration of trajectory generation in the multi-goal path planning opens possible
future planning improvements. Trajectories allow optimization of required mission time
or needed energy, also the coordination can be explicitly addressed if positions of robots
in time are known. In addition, uncertainty of robot localization can be considered dur-
ing SOM adaptation process. According to the planned trajectory a localization error can
be estimated and desired destination can be changed, e.g. a new alternate point can be
generated in the proposed WRP algorithm to decreased expected pose error.
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Chapter 9

Conclusion

9.1 Conclusion

The multi-goal path planning problem for a group of cooperating mobile robots in the
inspection task has been studied in this thesis. The inspection task is considered in two
main approaches formulated as well known problems. The decoupled approach consists
of the AGP and the MTSP formulations, it is motivated by discrete sensing capabilities of
mobile robots and high sensing cost. The second approach assumes continuous sensing
and it is formulated as the MWRP. The proposed application of the SOM adaptation pro-
cedure provides a flexible tool to address both approaches. It finds approximate solutions
of the problems within reasonable time. Moreover SOM has been applied to the gener-
alized multi-goal path planning problem where a goal is represented by a set of points
instead of a single point. The problem of the cooperation is formulated as optimization
of the MinMax criterion. The coordination is not explicitly addressed during the opti-
mization, but the SOM procedure provides non-crossing paths with high frequency. The
motion planning problem considered as the trajectory generation problem is addressed
by two methods: trajectory generation along the found paths and trajectory generation
during optimization.

In addition to the multi-goal path planning algorithm, two new algorithms have been
proposed for the related AGP (sensor placement problem) and motion planning problem,
particularly the Boundary Placement (BP) algorithm and the RRT–Pathext algorithm. Two
main aspects can be found in these algorithms. Both algorithms are randomized, which
allows consideration of various constraints, and in both algorithms the randomization
process is guided by a priori knowledge represented as a geometrical structure. The BP
algorithm uses the boundary and the RRT–Pathext algorithm uses the auxiliary path with
a corridor.

An efficiency of the proposed algorithms is based on the supporting geometrical struc-
tures. Supporting structures are essential to combine visibility problems, route optimiza-
tion and motion planning techniques all together in an algorithm with reasonable com-
putational requirements allowing application of the algorithms in mobile robotics. The
combination of structures from the computational geometry enables application of the
SOM procedure in a polygonal domain where length of the Geodesic path has to be used
instead of the Euclidean distance. Difficulty of the SOM application to such problems has
been found in literature, therefore the main contribution of the thesis can be considered in
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the proposed combination of supporting structures and the SOM adaptation procedure.
Besides, particular contributions are presented in the following summary of contribution.

• Finding Sensing Locations - the AGP or sensor placement algorithms

– an application of the polygon filter technique to the CPP algorithm,
– a set of suitable parameters of the modified CPP and the RDS algorithms based

on the experimental results in the maps of real environments and a set of visi-
bility ranges,

– a new algorithm called the Boundary Placement, which outperforms the CPP
and the RDS in the number of found sensing locations as well as in the required
length of the tour visiting the found set of locations,

– a post-optimization procedure to reduce the number of found sensing locations
for a restricted visibility range.

• Multi-Goal Path Planning for Cooperating Mobile Robots - MTSP-MinMax

– an application of the SOM adaptation procedure in a polygonal domain based
on the approximation of the shortest path among obstacles,

– a determination of the length of the ring as the length of the tour represented
by the ring, which seems to increase quality of found solutions,

– an experimental verification of the MTSP algorithms (variants of GENIUS and
SOM) in a set of problems in a polygonal domain where cities are found as
sensing locations for the given visibility range,

– an algorithm for the multi-depot MTSP-MinMax based on the SOM procedure
in a polygonal domain,

– an experimental verification of the SOM procedure on a triangular mesh for a
set of mesh densities,

– an application of navigation functions in the SOM adaptation procedure,
– an adaptation rule for a representative of AoI,
– an algorithm for the generalized multi-goal path planning problem.

• Cooperative Inspection Task in a Polygonal Domain

– an algorithm for the decoupled approach based on the solution of the AGP
with the visibility range constraint and the MTSP-MinMax,

– an algorithm for the cooperative inspection of segment sensing locations,
– an algorithm for the cooperative inspection of convex areas of interest,
– an algorithm for MWRP-MinMax with restricted visibility range,
– a feasibility study of the MWRP-MinMax with restricted visibility range and

kinodynamic constraints.

• Motion Planning - Trajectory Generation

– experimental results of trajectory consideration in the route optimization, an
influence to the solution quality,

– a comparison of performance of the RRT–Path algorithm with various auxiliary
paths,

– a new motion planner called the RRT–Pathext, which is able to solve the multi-
goal motion planning problem.

Regarding the presented contributions the goals of the thesis are fulfilled.
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9.2 Future Work

The proposed approaches addressing variants of the multi-goal path planning and co-
operative inspection consist of several components, which are particular algorithms or
supporting structures. These components can be reconsidered to improve overall per-
formance of the algorithms and detail discussion of particular possible improvements
have been presented in each relevant chapters, therefore this section is focused on over-
all directions of the future work. At first, three motivation can be identified for possible
improvements:

1. quality of solution,
2. required computational time,
3. parameters settings.

A better solution does not necessary mean increased computational time, which can be
an important aspect of eventual improvements of supporting structures. A more suitable
geometrical structure can improve quality of solutions and reduced the computational
time, e.g. consideration of the boundary in the BP. Also less parameters are more practical
and it is great advantage if an algorithm is self-tunable.

The presented results of the proposed SOM adaptation procedures in a polygonal do-
main for variants of the inspection task and multi-goal planning demonstrate feasibility
of the proposed approach and can be motivation for additional applications to another
problems from the class of hybrid visibility problems. From the another point of view the
proposed algorithms are inspiring to consider more complex constraints all together that
is especially important in robotic applications. Possible future steps beyond presented
approach can be in following directions:

• an explicit consideration of coordination, application of SOM in high dimensional
input space to directly use nodes in C,
• an extension to a 3D model of environment,
• a consideration of complex kinematic and kinodynamic constraints,
• a consideration of path planning with uncertainty,
• a solution for other cooperative visibility based task, e.g. the Covert Navigation,
• an application of the proposed WRP algorithm to the AGP or the Vision Points Prob-

lem,
• an application of ideas of the generalized multi-goal path planing approach to the

Touring a Sequence of Polygons Problem,
• a consideration of the sensing and motion costs in the View Planning Problem.
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Appendix A

Algorithm Experiments – AGP

A.1 The CPP algorithm

(a) d=5 m, k=0 cm (b) d=5 m, k=5 cm (c) d=2 m, k=5 cm

Figure A.1: Found guards by the CPP algorithm, map jh for the visibility range d and the
relevance k.

(a) k=0 cm (b) k=5 cm

Figure A.2: Found guards by the CPP algorithm, map pb and visibility range 10 m.
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A.2 The RDS algorithm

m

Guards Ratio
Maps Visibility ranges [m]

jh ta pb inf 10.0 5.0 4.0 3.0 2.0 1.5 1.0

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5 0.88 0.89 0.87 0.82 0.87 0.89 0.88 0.88 0.89 0.91 0.91

10 0.87 0.88 0.86 0.78 0.86 0.89 0.87 0.87 0.89 0.90 0.90
25 0.87 0.89 0.85 0.77 0.83 0.90 0.87 0.88 0.89 0.91 0.92
50 0.88 0.89 0.85 0.74 0.83 0.90 0.88 0.89 0.90 0.91 0.93
75 0.88 0.91 0.86 0.77 0.84 0.90 0.88 0.91 0.91 0.92 0.94

100 0.89 0.91 0.86 0.76 0.83 0.91 0.89 0.91 0.92 0.92 0.94
(a) Guards Ratios

m

Length Ratio
Maps Visibility ranges [m]

jh ta pb inf 10.0 5.0 4.0 3.0 2.0 1.5 1.0

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5 0.93 0.96 0.95 0.92 0.95 0.95 0.95 0.94 0.95 0.96 0.95

10 0.91 0.95 0.95 0.89 0.94 0.95 0.93 0.93 0.95 0.95 0.95
25 0.90 0.95 0.95 0.87 0.91 0.94 0.93 0.93 0.95 0.96 0.95
50 0.89 0.95 0.95 0.86 0.91 0.93 0.92 0.95 0.96 0.95 0.96
75 0.89 0.96 0.95 0.86 0.90 0.93 0.93 0.95 0.96 0.96 0.96

100 0.89 0.95 0.95 0.85 0.90 0.93 0.92 0.95 0.96 0.95 0.96
(b) Length Ratios

Table A.3: Experimental results of the RDS algorithm, average ratios of the number of
guards and length of the tour for the particular map and for the visibility range according
to the number of random samples m. The ratios are computed according to average val-
ues form=1. Standard deviations are very similar for all maps and the number of samples
and they increase with shorter visibility range and decrease with increasing number of
samples. The highest value of the ratio between number of guards and its standard de-
viation is for the unrestricted visibility range and the values are around 10%. The ratio
decreases and it is around 1% for the lowest visibility range one meter. It is similar for the
lengths of tour, the highest ratio is less than 7% for the unrestricted visibility range and it
is less than 1.3% (typically 0.7%) for the visibility range one meter.
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Figure A.3: Quality of solutions found by the RDS algorithm according to the number of
samples m, the first two columns represent guards ratios for m=25, resp. m=100 and the
next two columns represent the length ratios.
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A.3 The BP algorithm
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Figure A.4: Performance of the BP algorithm according to the boundary value b.
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Figure A.5: Found guards in particular part of the BP algorithm.
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Figure A.6: Computational time spent if particular part of the BP algorithm.
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A.5 Other Environments

(a) map dense, d=4 m, CPP,
G=285, L=270 m

(b) map dense, d=4 m, RDS,
m=25, G=61, L=181 m

(c) map dense, d=4 m, BP,
d=0.5 m, G=53, L=180 m

(d) map potholes, d=2 m, CPP,
G=306, L=234 m

(e) map potholes, d=2 m, RDS,
G=81, L=159 m

(f) map potholes, d=2 m, BP,
d=1 m, G=68, L=155 m

(g) map warehouse, d=4 m, CPP,
G=361, L=496 m

(h) map warehouse, d=4 m, RDS,
m=25, G=99, L=383 m

(i) map warehouse, d=4 m, BP,
d=1.2 m, G=78, L=363 m

(j) map h2, d=5 m, CPP, G=361,
L=1353 m

(k) map h2, d=5 m, RDS, m=25,
G=99, L=1132 m

(l) map h2, d=5 m, BP, b=1.5 m,
G=78, L=887 m

Figure A.8: Solutions for the maps dense, potholes, warehouse with the square ground plan
with size 21, 20 and 40 meters, and map h2 of real building with size approximately sev-
enty times forty meters, G is the number of guards and L is the length of the path.
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Appendix B

Algorithm Experiments – TSP/MTSP

B.1 Testing Environments

Name Size Area No. No. No. Convex
[m ×m] [m2] Vertices Holes Polygons

jari 4.5 × 4.9 20 48 1 14
complex2 20.0 × 20.0 322 40 3 21

m1 4.8 × 4.8 20 51 4 26
m2 4.8 × 4.8 15 51 6 20

map 4.8 × 4.8 14 68 8 36
potholes 20.0 × 20.0 367 153 23 75

rooms 20.0 × 20.0 351 80 0 33
a 8.9 × 14.1 71 99 6 22

dense 21.0 × 21.5 299 288 32 150
m3 4.8 × 4.8 17 308 50 120

warehouse 40.0 × 40.0 1192 142 24 83
jh 20.6 × 23.2 455 196 9 77

pb 133.3 × 104.8 1453 89 3 41
ta 39.6 × 46.8 731 74 2 30

h2 84.9 × 49.7 2816 2062 34 476

Table B.1: Testing environments with obstacles.

Name No. Cities
jari 6

complex2 8
m1 11
m2 12

map 18
potholes 18

rooms 21
a 22

(a) small set

Name∗ No. Cities
dense4 53

potholes2 68
m31 71

warehouse4 79
jh2 80

pb4 105
ta2 141

h25 168
(b) middle set

Name∗ No. Cities
potholes1 282

jh1 356
pb1.5 415

h22 568
ta1 574

(c) large set

Table B.2: Set of problems for environments with obstacles.

∗Subscript denotes visibility range in meters.
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Name Coordinates Depot Variant

dense 10.5, 12.0 depot
m3 0.25, 25.0 depot

potholes 24.9, 30.2 depot
pb 65.5, 44.0 depot
ta 30.5, 27.0 depot

warehouse 21.0, 19.5 depotA
warehouse 15.0, 10.0 depotB

jh 10.0, 0.5 depotA
jh 10.5, 11.0 depotB

h2 57.5, -31.4 depotA
h2 80.4, -46.6 depotB

Table B.3: Depot coordinates for particular maps, in map coordinate system converted to
meters and rounded to decimals.

B.2 TSP Results

SP
MS

#s LR sLR TR
[%]

pa 0 64 1.02 0.035 1.76
va-0 14 79 1.04 0.045 1.24
va-1 0 63 1.02 0.039 1.58
va-2 0 64 1.02 0.046 1.75
va-3 0 63 1.02 0.034 1.77

(a) small problem set, error stop condition

SP
MS

#s LR sLR TR
[%]

pa 0 28 1.13 0.147 1.32
va-0 0 27 1.12 0.139 1.00
va-1 0 27 1.12 0.163 1.23
va-2 0 27 1.13 0.170 1.28
va-3 0 28 1.12 0.148 1.32
(b) small problem set, unique stop condition

SP
MS

#s LR sLR TR
[%]

pa 0 83 1.05 0.038 3.28
va-0 45 128 1.09 0.043 1.81
va-1 0 84 1.05 0.047 2.60
va-2 0 84 1.05 0.044 3.16
va-3 0 84 1.05 0.046 3.27

(c) middle problem set, error stop condition

SP
MS

#s LR sLR TR
[%]

pa 0 61 1.05 0.045 2.43
va-0 1 63 1.08 0.051 1.00
va-1 0 61 1.05 0.042 1.95
va-2 1 62 1.05 0.046 2.39
va-3 0 61 1.05 0.046 2.44
(d) middle problem set, unique stop condition

SP
MS

#s LR sLR TR
[%]

pa 0 99 1.04 0.019 2.51
va-0 17 115 1.14 0.083 0.93
va-1 0 100 1.04 0.018 1.92

(e) large problem set, error stop condition

SP
MS

#s LR sLR TR
[%]

pa 3 91 1.04 0.020 2.24
va-0 38 125 1.14 0.080 1.00
va-1 4 91 1.04 0.019 1.73

(f) large problem set, unique stop condition

Table B.4: Approximation of the node–city path, the SP column is the path refinement
variant.
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(a) map jari, N=6,
L=13.6 m

(b) map complex2, N=8,
L=58.5 m

(c) map m1, N=13,
L=17.1 m

(d) map m2, N=14,
L=19.4 m

(e) map map, N=17,
L=26.5 m

(f) map potholes, N=17,
L=88.5 m

(g) map rooms, N=22,
L=165.9 m

(h) map a, N=22,
L=52.7 m

(i) map dense, N=53,
L=191.7 m

(j) map m3, N=71,
L=40.7 m

(k) map warehouse, N=79,
L=381.4 m

(l) map jh, N=80,
L=201.9 m

(m) map pb, N=104, L=654.8 m (n) map ta, N=141,
L=336.0 m

(o) map h2, N=168, L=952.6 m

Figure B.1: Selected best solutions found by the SOM-pa variant with error stop condition,
N is the number of cities and L is the length of the found tour.
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B.3 MTSP Results

m
SOM-nn

#s LR CQ CER TR

2 85 1.08 0.07 1.01 1.00
3 86 1.11 0.12 0.98 1.00
4 86 1.12 0.14 0.95 1.00
5 87 1.17 0.20 0.94 1.00

SOM-cc
#s LR CQ CER TR

85 1.06 0.05 1.01 0.89
85 1.09 0.11 0.98 0.91
86 1.11 0.13 0.96 0.91
86 1.14 0.16 0.94 0.92

(a) SOM error stop condition

m
SOM-nn

#s LR CQ CER TR

2 62 1.08 0.08 1.01 0.72
3 63 1.10 0.12 0.98 0.72
4 64 1.12 0.15 0.95 0.73
5 64 1.17 0.20 0.94 0.74

SOM-cc
#s LR CQ CER TR

62 1.06 0.05 1.00 0.66
63 1.10 0.11 0.98 0.67
63 1.11 0.14 0.96 0.67
64 1.15 0.17 0.94 0.68

(b) SOM unique stop condition

m
No. SOM-nn
Iter MS sLR sCQ sCER

2 220 0.0 0.059 0.059 0.055
3 220 0.0 0.072 0.072 0.061
4 220 0.0 0.072 0.072 0.056
5 220 0.0 0.085 0.085 0.077

SOM-cc
MS sLR sCQ sCER

0.0 0.049 0.049 0.042
0.0 0.065 0.065 0.049
0.0 0.075 0.075 0.053
0.0 0.075 0.075 0.070

(c) SOM error stop condition, sample standard deviations

m
No. SOM-nn
Iter MS sLR sCQ sCER

2 220 0.0 0.060 0.060 0.058
3 220 0.0 0.074 0.074 0.063
4 220 0.5 0.075 0.075 0.063
5 220 0.0 0.080 0.080 0.080

SOM-cc
MS sLR sCQ sCER

0.0 0.051 0.051 0.041
0.0 0.070 0.070 0.053
0.5 0.068 0.068 0.054
0.5 0.081 0.081 0.073

(d) SOM unique stop condition, sample standard deviations

m
GENIUS - quality

LR CQ CER sLR sCER

2 1.04 0.003 1.04 0.03 0.033
3 1.06 0.005 1.06 0.05 0.048
4 1.06 0.007 1.06 0.04 0.043
5 1.06 0.010 1.06 0.05 0.049

GENIUS - fast
LR CQ CER sLR sCER

1.07 0.003 1.07 0.04 0.043
1.11 0.006 1.11 0.06 0.066
1.14 0.011 1.14 0.06 0.056
1.17 0.015 1.16 0.07 0.076

(e) GENIUS

Table B.6: MTSP results for the middle problem set.
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m
SOM-nn

#s LR CQ CER TR

2 100 1.05 0.05 1.00 1.00
3 100 1.07 0.09 0.96 1.00
4 100 1.09 0.12 0.94 1.00
5 100 1.09 0.16 0.91 1.00

SOM-cc
#s LR CQ CER TR

100 1.03 0.04 0.99 0.94
100 1.04 0.07 0.97 0.95
100 1.06 0.11 0.94 0.96
100 1.05 0.12 0.91 0.96

(a) SOM error stop condition

m
SOM-nn

#s LR CQ CER TR

2 91 1.05 0.06 0.99 0.90
3 102 1.07 0.10 0.97 1.02
4 104 1.09 0.12 0.94 1.04
5 105 1.09 0.16 0.91 1.05

SOM-cc
#s LR CQ CER TR

93 1.03 0.04 0.99 0.88
90 1.04 0.07 0.97 0.85

101 1.06 0.10 0.94 0.96
100 1.06 0.14 0.91 0.95

(b) SOM unique stop condition

m
No. SOM-nn
Iter MS sLR sCQ sCER

2 140 0.0 0.038 0.038 0.039
3 140 0.0 0.076 0.076 0.054
4 140 0.0 0.073 0.073 0.050
5 140 0.0 0.090 0.090 0.065

SOM-cc
MS sLR sCQ sCER

0.0 0.031 0.031 0.025
0.0 0.045 0.045 0.032
0.0 0.062 0.062 0.042
0.0 0.064 0.064 0.054

(c) SOM error stop condition, sample standard deviations

m
No. SOM-nn
Iter MS sLR sCQ sCER

2 140 5.7 0.038 0.038 0.040
3 140 17.9 0.080 0.080 0.056
4 140 19.3 0.073 0.073 0.053
5 140 21.4 0.088 0.088 0.060

SOM-cc
MS sLR sCQ sCER

7.1 0.029 0.029 0.025
4.3 0.051 0.051 0.035

15.0 0.060 0.060 0.043
14.3 0.076 0.076 0.057

(d) unique stop condition, sample standard deviations

m
GENIUS - quality

LR CQ CER sLR sCER

2 1.04 0.000 1.04 0.03 0.034
3 1.04 0.001 1.04 0.03 0.033
4 1.06 0.002 1.06 0.05 0.052
5 1.05 0.003 1.05 0.04 0.041

GENIUS - fast
LR CQ CER sLR sCER

1.08 0.001 1.08 0.03 0.035
1.12 0.001 1.12 0.05 0.047
1.15 0.002 1.15 0.06 0.064
1.15 0.004 1.15 0.05 0.050

(e) GENIUS

Table B.7: MTSP results for the large problem set.
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APPENDIX B. ALGORITHM EXPERIMENTS – TSP/MTSP

B.4 SOM on a Triangular Mesh

#4 NV
jh, 356 cities

#s PDM PDB T [s]
870 575 99 24.6 20.1 93.9

2 714 1 623 98 7.9 6.6 118.4
6 174 2 527 98 6.0 4.4 154.0

10 845 5 961 98 5.1 4.0 180.2
15 213 8 212 98 4.6 3.5 204.0
18 843 10 150 98 4.3 3.0 222.2
24 033 12 867 98 4.4 3.5 245.3

pa 97 3.7 2.5 164.6
va-0 98 9.9 8.2 50.1
va-1 97 3.9 2.8 119.0

jh, 36 cities
#s PDM PDB T [s]
76 1.4 0.3 1.0
76 1.2 0.1 1.3
75 0.7 0.0 1.6
74 0.6 0.1 2.1
74 0.4 0.0 2.5
74 0.6 0.0 2.7
74 0.8 0.0 2.9
75 0.6 0.1 1.8
75 1.1 0.1 0.7
75 0.9 0.0 1.3

Table B.9: Performance of the SOM adaptation procedure on the triangular mesh, #4 is
the number of triangles, NV is the number of graph nodes (cities are not included) and T
is required computational time in seconds.

(a) 870 triangles, L=460 m (b) 2 714 triangles, L=394 m (c) 10 845 triangles, L=380 m

Figure B.2: SOM solutions of the TSP according to triangular mesh granularity, environ-
ment jh and 356 cities, L denotes the length of the found tour.
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APPENDIX B. ALGORITHM EXPERIMENTS – TSP/MTSP

B.5 TSPLIB problems

Problem Depot
name index

berlin52 47
bier127 25
ch130 53
eil101 26
eil76 75
st70 5
rd100 46
rat195 97

(a) tsplib-middle

Problem Depot
name index

gil262 115
kroB200 57
lin318 157
rat575 287
rd400 289
u574 234

(b) tsplib-large

m
SOM

#s LR CQ CER sLR

1 73 1.05 - - 0.02
2 74 1.08 0.071 1.01 0.06
3 75 1.17 0.139 1.01 0.09
4 75 1.23 0.166 1.01 0.11
5 76 1.25 0.189 1.00 0.15

GENIUS-quality
LR CQ CER

1.03 - -
1.04 0.002 1.04
1.05 0.005 1.05
1.05 0.007 1.05
1.07 0.011 1.07

GENIUS-fast
LR CQ CER sLR

1.05 - - 0.02
1.08 0.002 1.08 0.05
1.12 0.005 1.11 0.05
1.15 0.010 1.14 0.07
1.16 0.016 1.15 0.08

(c) tsplib-middle

m
SOM

#s LR CQ CER sLR

1 88 1.05 - - 0.01
2 89 1.10 0.085 1.01 0.08
3 89 1.17 0.137 1.01 0.12
4 89 1.28 0.185 1.04 0.15
5 90 1.36 0.233 1.04 0.18

GENIUS-quality
LR CQ CER

1.04 - -
1.03 0.001 1.03
1.04 0.002 1.04
1.05 0.003 1.05
1.06 0.003 1.06

GENIUS-fast
LR CQ CER sLR

1.06 - - 0.01
1.06 0.001 1.06 0.04
1.08 0.002 1.08 0.04
1.13 0.003 1.13 0.05
1.15 0.004 1.15 0.06

(d) tsplib-large

Table B.10: Overall results for TSPLIB problems.
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Figure B.3: Required computational time for TSPLIB problems.
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Appendix C

Algorithm Experiments –
WRP/MWRP

(a) map warehouse, d=10 m,
124 convex polygons

(b) map warehouse, d=4 m,
324 convex polygons

(c) map warehouse, d=2 m,
1155 convex polygons

(d) map potholes, d=10 m,
94 convex polygons

(e) map potholes, d=4 m,
132 convex polygons

(f) map potholes, d=2 m,
357 convex polygons

Figure C.1: Examples of found convex covers for the visibility range d, a triangular mesh
with 8210 triangles is used for the map warehouse and a mesh with 2429 triangles for the
map potholes.
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