Decentralized Multi-Robot Planning to Explore and Perceive

Laëtitia Matignon¹, Laurent Jeanpierre² and Abdel-Illah Mouaddib² ¹ LIRIS/CNRS UMR5205 - University of Lyon 1, France ² GREYC/CNRS UMR6072 - University of Caen Basse-Normandie, France

ECAI 2014 Workshop on Multi-Agent Coordination in Robotic Exploration

Context

"CAROTTE" Robotic challenge

Objective

 autonomous robotic system for mapping and exploration of an unknown and dynamic environment with unmanned ground vehicle(s) (UGV(s))

Issues of the challenge

- mobility
- Iocalisation and mapping (SLAM)
- decision

- object detection and localisation
- communication constraints

ROBOTS_MALINS team (GREYC-CNRS, THALES, INRIA groupe evolution)

• decentralized multi-robot system for exploration, mapping and object detection

Specific Problem

Decentralized multi-robot planning to explore and perceive

Assumptions

- independant robots
- no central base station
- distributed SLAM (localization and shared map): full local observability
- limited communication between robots (share only their localization)

Outline

- Decision model for multi-robot exploration based on decentralized Markov decision processes (Dec-MDPs)
- Active perception combined with exploration

Markov decision processes

Decision-theoretic models based on Decentralized MDPs provide an expressive mean of modeling cooperative teams of decision makers.

MDP (Puterman 1994) < S, A, T, R >

- S set of states, A set of actions
- T : S × A × S → [0; 1] transition function giving the probability for the robot of transitioning from state s to s' after doing action a
- $R: S \rightarrow \Re$ reward function giving the robot's immediate reward for being in state s

Solving a MDP

- Find an optimal policy $\pi^*: S \to A$: sequence of actions maximising the long-term expected reward
- The value of π^* is defined by the optimal value function

$$V^{*}(s) = R(s) + \gamma \max_{a \in A} \sum_{s' \in S} T(s, a, s') V^{*}(s')$$
(1)

Dec-(PO)MDP (Bernstein et al. 2002) $< n, S, A, T, R, \Omega, O >$

• *n* number of robots, *S* set of joint states, $A = \{A_1, ..., A_n\}$ set of joint actions

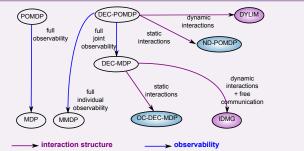
- T: S × A × S → [0;1] transition function giving the probability for the *n* robots of transitioning from joint state *s* to *s'* after doing joint action *a*
- $R: S \to \Re$ reward function giving the robots' immediate reward for being in joint state s
- Ω set of observations et O : S × A × S × Ω → [0;1] observation function can be left out if the states of agents are fully observable locally

Solving a Dec-(PO)MDP

- optimal resolution is NEXP complete (Bernstein et al. 2002)
- not realistic for large-scale problems/real-world applications
- assumption of total dependences: permanent interaction between all agents.

Resolution of Dec-(PO)MDPs

Interaction-oriented models



exploit local interactions to solve the model

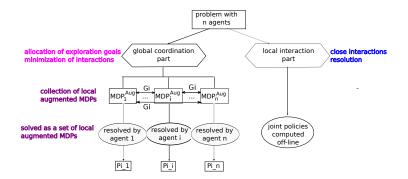
- relax the assumption of permanent interactions between all agents
 - static interactions: ND-POMDP (Nair et al. 2005)
 - dynamic interactions: DEC-SIMDP (Melo & Veloso 2011), DyLIM (Canu & Mouaddib 2011)

Our interaction-oriented approach

Motivations

- real-world application of Dec-MDPs to multi-robot exploration
- global coordination to allocate exploration goals
- minimize local interactions (overlapping, conflicts, collisions)

Our interaction-oriented approach (Matignon et al. 2012)



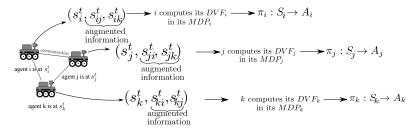
Global coordination class

- $MDP_i^{Aug} = \langle S_i, A_i, T_i, R_i, G_i \rangle$
 - $< S_i, A_i, T_i, R_i >$ individually models agent *i* in the absence of other agents
 - G_i the augmented information enables interactions between MDPs

Reduction of the complexity to solve one MDP (polynomial) per agent

Augmented MDP resolution

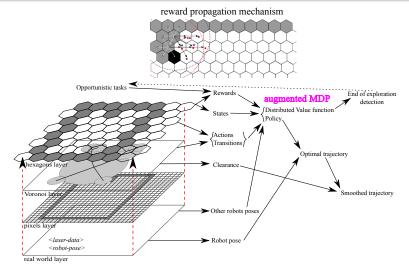
• G_i is limited to the states of other agents (exploration context)



$$\forall s_i \in S_i \quad DVF_i(s_i) = R_i(s_i) + \gamma \max_{a_i \in A_i} (\sum_{s' \in S_i} T_i(s_i, a_i, s') [DVF_i(s') - \sum_{j \neq i} f_{ij} P_r(s'|s_{ij}) V_j(s')])$$

- P_r(s'|s_{ij}) probability for agent j of transitioning from s_{ij} to s'
- V_i value function of agent j
- fij weighting factor

Augmented MDP model



• One decision step: build the model, compute a policy from DVF, produce a smooth trajectory

greedy approach

Experimental platforms

Robotic platform

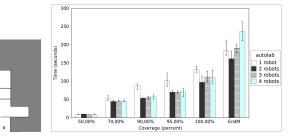
- Wifibot µ-troopers
- software based on a Data Distribution Service (publish-subscribe messaging pattern)
- various modules on each robot: laser acquisition, multi-robot SLAM (Xie et al. 2010), decentralized decision, mobility, object recognition (shape/template matching)
- the architecture: laser scans/states exchange, robust to communication failures

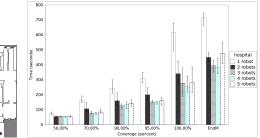
Simulations with Stage

The simulator architecture mimics the robotic platform architecture:

- DDS \IPC shared memory segment
- Iaser acquisition module ⇔ laser virtual sensor
- multi-robot SLAM module and mobility module ⇔ position virtual device
- same decentralized decision module

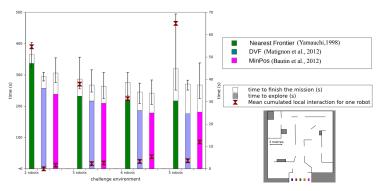
Experimental results





Experimental results

- Nearest frontier (Yamauchi, 1998): greedy approach, no coordination
- MinPos (Bautin et al.,2012): the cost function is for each robot-frontier pair, the number of robots closer than it towards the considered frontier



First approach

- object detection and decision independant
- pictures to detect objects gathered along the way
- poor performance because some objects not photographed

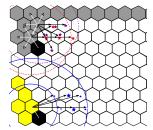
First approach

- object detection and decision independant
- pictures to detect objects gathered along the way
- poor performance because some objects not photographed

Second approach

- decision module extended to cover the explored space with photos
- two criteria: exploration and picture coverage

Planning to explore and perceive Active perception combined with exploration

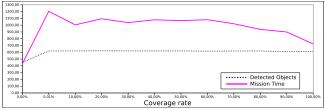


Reward propagation mechanisms

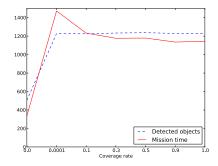
- *R_{i,exp}* is the reward function to explore
- *R_{i,cov}* is the reward function to take a photo
- $\alpha \in [0,1]$ is the picture coverage rate

$$\forall s_i \in S_i \quad DVF_i(s_i) = (1 - \alpha)R_{i,exp}(s_i) + \alpha R_{i,cov}(s_i) + \gamma \max_{a_i \in A_i} (\sum_{s' \in S_i} T(s_i, a_i, s')[DVF_i(s') - \sum_{j \neq i} f_{ij}P_r(s'|s_{ij})V_j(s')])$$

Planning to explore and perceive Experimental results in simulation



Results with autolab environment (over 340 simulations)

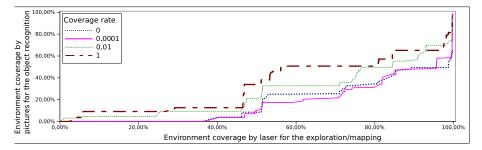


Results with challenge environment (over 700 simulations)

Decentralized Multi-Robot Planning to Explore and Perceive

Planning to explore and perceive Experimental results in simulation

 $\alpha = 1.0$: optimize photo coverage

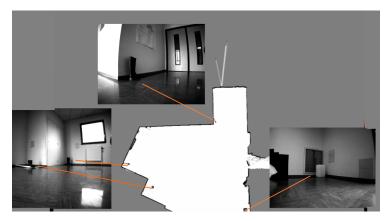


• α must be chosen to balance the priority of exploration and picture coverage

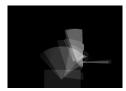
Decentralized Multi-Robot Planning to Explore and Perceive

Planning to explore and perceive Experimental results with real robot

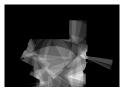
One robot, 4 objects:



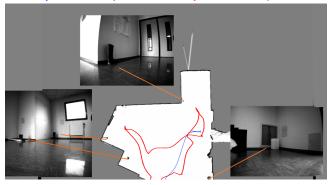
Planning to explore and perceive Experimental results with real robot



 $\alpha = 0.0$ 1 object taken in pictures



lpha=1.0 4 objects taken in pictures



Conclusion

- Coordinated multi-robot exploration using Dec-MDPs
- Integration of the picture coverage criteria into the planning
- Balance the priority between exploration and picture coverage

Perspectives

- Compare object recognition results on real robots
- Active perception combined with exploration by planning viewpoints where the recognition process would be more reliable

laetitia.matignon@univ-lyon1.fr

http://liris.cnrs.fr/ Imatigno/

Planning to explore and perceive

Bernstein, D. S., Givan, R., Immerman, N. & Zilberstein, S. (2002). The complexity of decentralized control of markov decision processes, Math. Oper. Res. 27: 819–840.

Canu, A. & Mouaddib, A.-I. (2011).

Collective decision- theoretic planning for planet exploration, Proc. of ICTAI.

Matignon, L., Jeanpierre, L. & Mouaddib, A.-I. (2012).

Coordinated multi-robot exploration under communication constraints using decentralized markov decision processes., Proc. of AAAI.

Melo, F. S. & Veloso, M. M. (2011).

Decentralized mdps with sparse interactions, Artif. Intell. 175(11): 1757-1789.

Nair, R., Varakantham, P., Tambe, M. & Yokoo, M. (2005).

Networked distributed pomdps: A synthesis of distributed constraint optimization and pomdps, *Proc. of AAAI*, pp. 133–139. Iterman M I (1994)

Markov decision processes, John Wiley and So

Xie, J., Nashashibi, F., Parent, N. M. & Garcia-Favrot, O. (2010).

A real-time robust slam for large-scale outdoor environments, 17th ITS World Congress.