
Asynchronous Decentralized Algorithm for
Space-Time Cooperative Pathfinding

Michal Čáp∗, Peter Novák†, Jiří Vokřínek∗ and Michal Pěchouček∗
∗Agent Technology Center, Dept. of Computer Science, FEL, CTU in Prague

†Algorithmics Group, Dept. of Software and Computer Technology, EEMCS, Delft University of Technology

Abstract—Cooperative pathfinding is a multi-agent path plan-
ning problem where a group of vehicles searches for a corre-
sponding set of non-conflicting space-time trajectories. Many
of the practical methods for centralized solving of cooperative
pathfinding problems are based on the prioritized planning
strategy. However, in some domains (e.g., multi-robot teams of
unmanned aerial vehicles, autonomous underwater vehicles, or
unmanned ground vehicles) a decentralized approach may be
more desirable than a centralized one due to communication
limitations imposed by the domain and/or privacy concerns.

In this paper we present an asynchronous decentralized
variant of prioritized planning ADPP and its interruptible
version IADPP. The algorithm exploits the inherent parallelism
of distributed systems and allows for a speed up of the com-
putation process. Unlike the synchronized planning approaches,
the algorithm allows an agent to react to updates about other
agents’ paths immediately and invoke its local spatio-temporal
path planner to find the best trajectory, as response to the
other agents’ choices. We provide a proof of correctness of
the algorithms and experimentally evaluate them on synthetic
domains.

I. INTRODUCTION

When mobile agents operate in a shared space, one of
the essential tasks for them is to prevent collisions among
themselves, possibly even to maintain a safe distance from
each other. Prominent examples of domains requiring ro-
bust collision avoidance techniques are different kinds of
autonomous multi-robotic systems, next-generation air traffic
management systems, road traffic management systems etc.

A range of methods is being currently employed to realize
a safe operation of agents within a shared space. Some of the
methods assume a cooperative setting where all the involved
agents work together to solve their mutual conflicts, others
assume a non-cooperative setting where the agents cannot
coordinate their actions, and yet others consider pursuit-
evasion adversarial scenarios where a solution is a trajectory
that is collision free against the worst-case behaviour of other
agents. In this work, we focus on the cooperative pathfinding.

Cooperative path planners are used to plan the routes for
a number of agents, taking in consideration the objectives
of each agent while avoiding conflicts between the agents’
paths. If the agents execute the resulting multi-agent plan
precisely, it is guaranteed that the agents will not collide.
Centralized solvers in literature are based either on global
search or decoupled planning. Global search methods find
optimal solutions, but they do not scale well for higher (over
ten) numbers of conflicting agents. One of the most efficient

optimal solvers for cooperative pathfinding on grids has been
introduced by Standley in 2010 [8].

Decoupled approaches are incomplete, but can be fast
enough for real-time applications e.g., in the video-game
industry. One of the the standard technique employed in
gaming is the Local Repair A* (LCA*) algorithm [7]. In
LCA* each agent plans a path independently and tries to
follow it to the goal position. If a collision occurs during
the path plan execution, the agent replans the remainder of
the route from the collision position taking into account the
positions in its vicinity occupied by the other agents involved
in the collision. Due to its greedy and reactive nature, the
method does not perform well in cluttered environments with
bottlenecks and can generate cycles, or otherwise aesthetically
unpleasant, or inefficient behaviours of agents [6]. To mitigate
these problems, Silver [7] introduced Cooperative A* (CA)
a cooperative pathfinding algorithm based on the idea of
prioritized planning [3].

In prioritized planing, each agent is assigned a priority and
the planning process proceeds sequentially agent after agent
in the order of the agents’ priorities. The first agent plans its
path using a single-agent planner disregarding the positions
and objectives of other agents. Each subsequent agent models
the paths of the higher-priority agents as moving obstacles and
plans its path such that the collisions with the higher-priority
agents’ paths are avoided. Such an approach has been shown
to be effective in practice [4]. The quality of the generated
solution is sensitive to the assigned priority ordering, however
there is a simple heuristic for choosing an efficient ordering
for the prioritized planning [9].

Recently, Velagapudi presented a decentralized prioritized
planning technique for large teams of mobile robots [10]. The
method is shown to generate the same results as the central-
ized planner. However, the formulation of the decentralized
algorithm is based on the assumption that the robots have a
"distributed synchronization mechanism allowing them to wait
for all team mates to reach a certain point in algorithm execu-
tion" [10] and thus it does not exploit the asynchrony common
in distributed systems. Rather the computation proceeds in
iterations and the agents wait for each other at the end of
each algorithm iteration. As a consequence, the algorithm does
proceeds in synchronous rounds, where the length of a round
is dictated by the agent performing the longest computation
due to either a high workload, or low computational resources
available.



After stating the cooperative pathfinding problem and ex-
posing the underlying ideas of the state-of-the-art prioritized
planning approaches in Sections II and III, Section IV presents
the main contribution of the paper, the asynchronous de-
centralized prioritized planning algorithm (ADPP). ADPP,
is an extension of the synchronized decentralized prioritized
planning algorithm (SDPP), which removes the assumptions
of synchronous execution of the decentralized algorithm.
Besides the generic form of the ADPP algorithm, we also
present a locally asynchronous modification of the ADPP
algorithm (interruptible ADPP, IADPP) enabling interruptible
path planner execution so that the individual agents can react
to updates received from their peers more swiftly. To prove
termination and correctness properties of ADPP and IADPP,
we provide a new proof of termination and correctness also
for the SDPP algorithm. Our proof is an alternative to the
original argument presented in [10]. We implemented and
extensively evaluated the discussed algorithms on a number
of synthetic scenarios. Section V provides both an illustrative
theoretical comparison of the SDPP and ADPP approaches, as
well as details the experimental evaluation of the introduced
algorithms. The experimental validations show that the asyn-
chronous versions of the prioritized planning algorithm offer
better runtime performance, as well as improved use of the
available computational resources.

II. COOPERATIVE PATHFINDING PROBLEM

Consider n agents a1, . . . , an operating in an Euclidean
space W . Each agent ai is characterized by its starting and
goal positions starti, desti respectively. The task is to find
a set of space-time trajectories P = {p1, . . . , pn}, such that
pi : R → W is a mapping from time points to positions
in W , pi(0) = starti, pi(ti) = desti and the trajectories
are mutually collision free, i.e., ∀i, j : i 6= j ⇒ ¬C(pi, pj),
where C(pi, pj) denotes a space-time mutual collision relation
between pi and pj . Informally, two trajectories collide (are in
a conflict) when the trajectories touch, or intersect. That is
pi[t
′] = pj [t

′] for some timepoint t′. However, more complex
collision relations can be considered, such as those considering
a minimal separation range between trajectories, etc. tdesti =
min{ti | pi[ti] = gi} denotes the shortest timepoint in which
the agent ai reaches its destination desti. As a solution quality
metric we use the cumulative time spent by agents navigating
their trajectories defined as dur(P ) =

∑n
i=1 t

dest
i . The cost

of solution P is defined as cost(P ) = dur(P )−dur(P ′)
dur(P ′) , where

P ′ is the set of best trajectories for each agent if the collisions
are ignored.

III. PRIORITIZED PLANNING

In general, the complexity of complete approaches to multi-
agent path planning grows exponentially with the number
of agents. Therefore, the complete approaches often do not
scale-up well and hence are often not applicable for nontrivial
domains with many agents. To plan paths for a high number
of agents in a complex environment, one has to resort to
one of the incomplete, but fast approaches. A simple method

s1s1 d2s1s1 d2 s2d2d1

s1s1 d2s1s1 d2 s2d2d1

Figure 1: Top: example of a problem to which a prioritized
planner will not find a solution. The first agent plans its
optimal path first, but such a trajectory is in conflict with all
feasible trajectories of the second agent. Bottom: example of
a problem to which a prioritized planner will find a solution
only if agent 1 has a higher priority than agent 2.

often used in practice is prioritized planning [3], [9], [1]. In
prioritized planning the agents are assigned a unique priority.
In its simplest form, the algorithm proceeds sequentially and
agents plan individually from the highest priority agent to
the lowest one. The agents consider the trajectories of higher
priority agents as constraints (moving obstacles), which they
need to avoid. It is straightforward to see that when the
algorithm finishes, each agent is assigned a trajectory not
colliding with either higher priority agents, since the agent
avoided a collision with those, nor with lower priority agents
who avoided a conflict with the given trajectory themselves.

The complexity of the generic algorithm grows linearly with
the number of agents, which makes the approach applicable
for problems involving many agents. Clearly, the algorithm
is greedy and incomplete in the sense that agents are satisfied
with the first trajectory not colliding with higher priority agents
and if a single agent is unable to find a collision-free path
for itself, the overall path finding algorithm fails. The benefit,
however, is fast runtime in relatively uncluttered environments,
which is often the case in multi-robotic applications. Priori-
tized planner is also sensitive to the initial prioritization of the
agents. Both phenomena are illustrated in Figure 1 that shows
a simple scenario with two agents desiring to move from s1
to d1 (s2 to d2 resp.) in a corridor that is only slightly wider
than a single agent. The scenario assumes that both agents
have identical maximum speeds.

A. Computing best response

During prioritized planning, an individual agent searches the
shortest path to its destination considering other higher-priority
agents as moving obstacles during the planning process. Ide-
ally, the agent should compute the best possible trajectory, a
best response to the trajectories of the higher-priority agents.
To find such a best response, the agent needs to solve a
motion planning problem with dynamic obstacles, which is a
significantly more complex task than the motion planning with
static obstacles since a new independent time dimension has
to be considered during planning. Henceforth, we will denote
the single-agent best-response planer process as a function
BEST-PATHi(start , dest , avoids), which returns the selected
best trajectory for the agent i, starting in the position start ,



Algorithm 1 Centralized Prioritized Planning (Cooperative
A*)

Ensure: After the algorithm finishes, Pathi contains the final
computed path for the agent with priority i. If the agent
couldn’t find a path not colliding with higher priority
agents, Pathi stores ∅.

1: procedure CA(〈start1, dest1〉, . . . , 〈startn, destn〉)
2: Avoids ← ∅
3: for i← 1 . . . n do
4: Pathi ←BEST-PATHi(start i, dest i,Avoids)
5: Avoids ← Avoids ∪ {Pathi}
6: end for
7: end procedure

8: function BEST-PATHi(start , dest , avoids)
9: return the best path from start to dest not conflicting

with
10: any of the paths in avoids . Otherwise return ∅.
11: end function

eventually reaching the position dest and at the same time not
colliding with any of the trajectories in the set avoids . Note,
we do not precisely specify what the best trajectory means, the
notion can be application-specific for the individual agent. For
simplicity, however, in the following we assume the notion of
the best path to correlate with time-optimality of trajectories,
i.e., the how fast a given agent can navigate along the trajectory
given its specific motion dynamic constraints.

B. Centralized Algorithm

A collision-free operation of a multi-agent team can be
ensured by forcing all agents to communicate their objectives
to a centralized planner, which centrally computes a solution
and informs the agents about the trajectory they have to follow
in order to maintain the conflict-free operation. As a baseline
for evaluation of performance of the latter introduced algo-
rithms, we use the cooperative A* algorithm [7]. Cooperative
A* is a centralized algorithm for cooperative path finding
based on prioritized planning employing the well-known A*
trajectory planning algorithm on grids [5]. Algorithm 1 lists
the pseudocode of the cooperative A* algorithm. We discussed
the correctness of this generic algorithm above.

C. Decentralized Algorithms

A decentralized algorithm for solving cooperative pathfind-
ing problems by means of prioritized planning has been
presented in [10]. The algorithm is synchronous in that it
contains synchronization points in the program execution
through which all agents proceed simultaneously. Due to the
synchronous nature of the algorithm, we will refer to this
algorithm as synchronized decentralized prioritized planning
(SDPP). Algorithm 2 lists the pseudocode of SDPP. We
slightly adapted the algorithm listing for exposition purposes
and comparison with the later introduced algorithms. Note that

Algorithm 2 Synchronized Decentralized Prioritized Planning
. pseudocode for the agent i /

Ensure: After the algorithm finishes, Pathi contains the final
computed path. If no solution was found, Pathi stores ∅.

1: procedure SDPP(start , dest ,nagents,priority)
2: Starti ← start; Desti ← dest
3: N ← nagents; I ← priority
4: Agentview i ← ∅; Pathi ← ∅
5: repeat
6: CHECK-CONSISTENCY-AND-PLAN
7: wait for all other agents to finish the planning

iteration
8: until global termination detected
9: end procedure

10: procedure CHECK-CONSISTENCY-AND-PLAN
11: if Pathi collides with Agentview i then
12: . Work on a copy of the Agentview i /
13: Pathi ←BEST-PATHi(Start i,Dest i,Agentview i)
14: for all j ← I + 1 . . . N do
15: SEND-INFORM-TO-j(I,Pathi )
16: end for
17: end if
18: end procedure

19: message handler RECEIVE-INFORM(j, path)
20: Agentview i ← (Agentview i \ 〈j, _〉) ∪ {〈j, path〉}
21: end message handler

in the decentralized setting we assume communication to be
reliable and the communication channel preserves the order
of messages they were sent in. Furthermore, the algorithm
assumes that before the start of the algorithm, each agent is
assigned a unique priority, an ordinal I ∈ 1 . . .N , where N
is the number of agents taking part on the algorithm run (the
lowest I means the highest priority). The algorithm is also
locally asynchronous and we assume safe (thread-safe) access
to global variables (denoted by capitalized identifiers). To
simplify the exposure, the thread-barrier locking mechanism
is omitted from the pseudocode.

The algorithm proceeds in iterations. In each iteration the
agents compute the best path if necessary and subsequently
communicate it to the lower priority agents. An agent must
recompute its trajectory in the case its current path collides
with some trajectories of higher priority agents computed and
communicated in the previous iterations. Upon receiving an
INFORM message, the agent simply replaces the information
about the trajectory of the sender agent in its Agentview i

set. Note, the algorithm is asynchronous, therefore the tra-
jectory planning routine BEST-PATHi operates on a copy the
Agentview i set.

The algorithm finishes when all the agents cease to com-
municate and either hold a trajectory, or they were not able
to find a collision-free trajectory. We assume that the global



termination condition is detected by some concurrently run-
ning global state detection algorithm, such as the Chandy and
Lamport’s snapshot algorithm [2].

The presented SDPP algorithm is correct in that when it
finds a solution for all the participating agents, the paths are
mutually collision free. However, the algorithm is incomplete
in the sense that there are situations when the algorithm fails
to find a solution for all the participating agents, even though
such a solution exists. In order to facilitate and simplify
exposition of the later introduced algorithms, we developed a
new alternative proof of the SDPP algorithm, which deviates
from the original one devised by the authors of SDPP [10].

To see the correctness of the SDPP algorithm we need to
show that firstly, the algorithm terminates, and secondly that
the resulting paths are mutually collision free.

Proof (SDPP termination): First of all, we need to show
that the algorithm finishes. That is, each agent i eventually
stops sending INFORM messages. We proceed by induction on
the individual agent priority i.

Initial step: since there is no agent with priority higher
than agent a1, the highest priority agent a1 informs the lower
priority agents only once in the first iteration of the algorithm
and from then on it remains silent since its path will always
be non-colliding with an empty set of paths - there are no
higher priority agents to inform this agent about an update of
the situation.

Induction step: Let’s assume the following induction hy-
pothesis: “after the agents with priorities 1 . . . k − 1 stopped
communicating, eventually also the agent with priority k stops
sending INFORM messages”. Let’s assume this is not the case
and there is a situation such that the agent k would end up
sending INFORM messages forever. For such to occur, the
agent however must have its mailbox continually being filled
with INFORM messages so that it’s RECEIVE-INFORM handler
routine gets invoked infinitely many times. In a consequence
the agent would possibly need to recompute its best path and
subsequently inform the lower priority agents infinitely often.
That however implies existence of a sender for each such a
message and hence by necessity there must be at least one
agent with priority higher than k which keeps sending INFORM
messages forever, which contradicts the induction hypothesis.

As a consequence of the consecutive silencing of agents
from high to lower priorities, it’s also relatively straightforward
to see that the SDPP algorithm makes at most N iterations
before it terminates.

Note, that not necessarily it is the agent with the lowest
priority which stops communicating the last. In the case a
lower priority agent computes a route which is not in a conflict
with a current set of temporary routes of the higher priority
agents, nor with any routes they will compute later on, its
reactions to receiving INFORM messages will be silent and
won’t result in further cascade of communication.

Proof (SDPP correctness): To see that after the algorithm
termination the variables Pathi store a set of non-conflicting
paths is rather straightforward. Since each agent eventually
sends its last INFORM message and cedes to communicate,

each agent with priority lower than its own eventually collects
all the last INFORM messages from all the higher priority
agents, together with their ultimate paths (being either a valid
path, or ∅). At that moment, all the couples 〈j,Pathj〉 for
all j > i are stored in the set Agentview i of the agent
with priority i. Subsequently the agent eventually invokes the
CHECK-CONSISTENCY-AND-PLAN routine for the last time
and thus either Pathi will end up unchanged, recomputed and
again non-conflicting with either of 〈j,Pathj〉 for all j < i,
or being invalid (∅). Finally, the agent informs all the agents
with priorities lower than i and cedes to communicate. At
the moment when the last agent stops communicating, all the
Pathi variables are either set correctly, or the algorithm failed
to find a solution for some of the participating agents.

As we already noted above, the SDPP algorithm is incom-
plete. To see that, consider a situation in which the agent with
the highest priority makes a choice which later on constraints
some of the lower priority agents so that they are unable to
find a solution. In the case there would be a locally worse
choice for the highest priority agent, which however would
enable the lower priority agents to find valid solutions, the
SDPP algorithm does not facilitate re-consideration of the first
choice, nor some backtracking mechanism.

During the algorithm computation, it can however happen
that an agent i sets its Pathi to ∅ and later reconsiders
this decision. This happens when among paths of the higher
priority agents there are conflicting couples, but those agents
did not manage to resolve the collisions yet and at the same
time the lower priority agent i is temporarily not able to route
around the space occupied by the temporary paths of the higher
priority agents.

Note that in the distributed prioritized planning, one can
use a simple marking-based termination-detection mechanism.
Following the proof of termination, agent i can mark its path
final if the path of agent priority i−1 in Agentview i is marked
final. The initial path of a1 is final. When an agent sends
his final path to a lower-priority agent, the higher-priority
agent can safely terminate its computation. When the final
path is generated by the lowest-priority agent, the computation
terminated globally.

IV. ASYNCHRONOUS PRIORITIZED PLANNING

The SDPP algorithm does not fully exploit the parallelism
of the distributed system, a drawback stemming from its
synchronous nature. The running time of a single iteration of
the SDPP algorithm is largely influenced by the speed of the
computationally slowest agent of the group. In every iteration,
the agents which finished their trajectory planning routine
faster, or did not have to re-plan at all sit idle while waiting
for the agents with higher workload in that iteration (or simply
slower computation), even though they could theoretically
resolve some of the conflicts they have among themselves in
the meantime and thus speed up the overall algorithm run.

To improve the performance of the decentralized coopera-
tive path finding, we propose an asynchronous decentralized



Algorithm 3 Asynchronous Decentralized Prioritized Plan-
ning
. pseudocode for the agent i /

1: procedure ADPP(start , dest ,nagents, priority)
2: Starti ← start; Desti ← dest
3: N ← nagents; I ← priority
4: Agentview i ← ∅; Pathi ← ∅
5: repeat
6: CheckFlag i ← false
7: CHECK-CONSISTENCY-AND-PLAN
8: wait for CheckFlag i , or global termination
9: until global termination detected

10: end procedure

11: message handler RECEIVE-INFORM(j, path)
12: Agentview i ← (Agentview i \ 〈j, _〉) ∪ {〈j, path〉}
13: CheckFlag i ← true
14: end message handler

prioritized planning algorithm (ADPP), an asynchronous vari-
ant of SDPP. Algorithm 3 lists the pseudocode of ADPP.

The main deviation from the SDPP listed in Algorithm 2 is
the formulation of the waiting condition in the main loop of
the algorithm. While each agent of the group waits for all the
other to finish in the SDPP algorithm, in the ADPP algorithm,
they break their idle upon receiving the next INFORM message
or a need to process updated Agentview i, in the case the agent
received a number of INFORM messages during the time it
was occupied with planning its own trajectory. The arrival of
a new INFORM message and thus the need to re-check the
consistency of the currently computed path with respect to the
new information is indicated by the state of the CheckFlag i
variable.

The proof of correctness of the ADPP algorithm follows
exactly the correctness proof of the SDPP algorithm above.
Note, in the SDPP proof, the condition that the algorithm
proceeds in a synchronized manner was never exploited. The
ADPP algorithm terminates for exactly the same reasons as
SDPP. Namely, the agent with the highest priority stops com-
municating right after it computes its path for the first time and
in consequence the agents with lower priority consecutively
cede to communicate later on as well until the algorithm
terminates. The argument for ADPP incompleteness follows
the incompleteness argument for SDPP as well.

Interruptible ADPP

The ADPP algorithm exploits the potential speed up with
respect to the inter-agent communication. However, while the
agent is computing the best path in the current situation, mes-
sages keep arriving. In a consequence, it can happen that an
individual agent’s computation returns from the path planning
routine BEST-PATHi only to find out that large part of the
work was invalidated by some later received messages. This
reveals a potential further speed-up of the ADPP algorithm
by interrupting the path planning upon reception of every

Algorithm 4 Interruptible Asynchronous Decentralized Pri-
oritized Planning - pseudocode for the agent i

1: procedure IADPP(start , dest ,nagents, priority)
2: Starti ← start; Desti ← dest
3: N ← nagents; I ← priority
4: Agentview i ← ∅; Pathi ← ∅
5: CHECK-CONSISTENCY-AND-PLAN
6: wait for global termination
7: end procedure

8: message handler RECEIVE-INFORM(j, path)
9: Agentview i ← (Agentview i \ 〈j, _〉) ∪ {〈j, path〉}

10: asynchronously launch/restart {
CHECK-CONSISTENCY-AND-PLAN}

11: end message handler

INFORM message and re-considering the computation in the
light of the newly received message. Algorithm 4 lists a
pseudocode of a modified ADPP algorithm which pro-actively
interrupts the trajectory planning computation upon receiving
every new INFORM message. Alternatively, it is conceivable
to exploit algorithms for dynamic trajectory planning, which
allow topological changes during the planning process.

Note, the main repeat-until loop was replaced by simple
wait for the algorithm termination. The repeated consistency
check (calls of the CHECK-CONSISTENCY-AND-PLAN rou-
tine) is secured by its asynchronous invocation from the
RECEIVE-INFORM routine. That is, the routine is executed in
a newly created computation run (thread) and the call does not
wait for its termination, it runs in parallel to the RECEIVE-
INFORM routine from then on. In the case there is already
a concurrent invocation of the CHECK-CONSISTENCY-AND-
PLAN routine running, it is killed and run anew (restarted)
with the updated Agentview i set.

The termination and correctness of the IADPP algorithm
stems from the termination and correctness of the ADPP algo-
rithm. The same proof applies, since the IADPP modification
was strictly local, not affecting the communication patterns
between the participating agents.

V. EVALUATION

The motivation for introducing the decentralized algorithm
and its asynchronous variants is oriented mainly to the runtime
improvements of the algorithm. Clearly, such a potential
improvement is greatly influenced by the topology of the
problem and the selection of agent priorities. In this section,
we will present experimental evaluations using superconflict
and randomly generated scenarios.

A. Experimental evaluation

We compare the centralized CA, SDPP, ADPP and IADPP
on a few variants of superconflict scenario and on a series
of randomly generated problem instances. The experiments
were performed on Intel Core 2 Duo @ 2.1 Ghz. The problem
instances used have the following common structure. A given



number of agents n operate in a shared 20 m x 20 m 2-
d square space. The agents generate a space-time trajectory
between their start and the destination position using a 4- or
8- connected grid graph. The agents can move on the edges
of the graph with the constant speed of 1 m/s or they can wait
for 0.5 s on any of the vertices in the graph. The wait “move”
can be used repeatedly. The agents are required to maintain
the separation distance 0.8 m from all other agents at all times,
even after they reached their destination.

The best-response planner used by all the agents is a spatio-
temporal A* planner operating over the grid graph, where the
heuristic is the time needed to travel the euclidean distance
from the current node to the destination node at the maximum
speed. All the compared algorithms use the identical best-
response planner.

To measure the runtime characteristics of the execution
of decentralized algorithms, we emulate the concurrent ex-
ecution of the algorithms using a discrete-event simulation.
The simulation measures the execution time of each message
handling and uses the information to simulate the concurrent
execution of the decentralized algorithm as if it is executed
on n independent computers. In the simulation we assume
zero communication delay. The concurrent process execution
simulator was implemented using Alite multi-agent simula-
tion toolkit. The complete source code of the experimental
environment (including the concurrent process simulator) and
the video recordings of the experiments are available at
http://agents.fel.cvut.cz/~cap/adpp/.

Superconflict scenarios

We performed a number of experiments on a few variants
of a challenging superfconflict scenario. In the superconflict
scenario, the agents’ start positions are put evenly spaced on a
circle and their goal positions are exactly at the opposite side
of the circle. Therefore, the agents’ nominal trajectories all
cross in the center of the circle. The superconflict scenario is
considered a challenging benchmark since each agent partici-
pating in one superconflict circle is in conflict with all other
agents of that circle. Due to this coupling, the problem cannot
be easily split into independent subproblems and solved in
parallel. In our implementation, the agents plan their trajectory
using a 60x60 8-connected grid graph. We evaluated the
algorithms on the following variants of superconflict scenario:

• Single supercoflict scenario with a 4 meters-wide super-
conflict of 8 agents placed in the middle of the square
space. Agents’ starting configuration and the final trajec-
tories obtained from IADPP are depicted in Figure 2a.
Note that A00 is the highest priority agent in all our
experiments.

• Four homogeneous superconflicts scenario with four
independent superconflicts of 8 agents (4 meters wide).
This scenario allows the cooperative pathfinding problem
to be split into four independent parts and thus the de-
centralized algorithms have an opportunity to exploit the
computational power of more processor (see Figure 2b).

• Four heterogeneous superconflicts scenario that com-
bines two superconflicts of four agents (4 meters wide)
and two superconflicts of eight agents (only 2 meters
wide). The former two have bigger radius than the latter
two and thus we expect that the best-response planner
invocations in the first group of superconflicts will take
on average longer to finish than the planners of the agents
from the second group. Such a difference in planning
times leads to an inefficient execution of SDPP, since
the slowest progressing cluster of conflicts limits the
speed at which the other conflict clusters are resolved.
The asynchronous algorithm can resolve each of the
superconflicts at a different pace and thus we expect
ADPP and IADPP to converge faster than SDPP (see
Figure 2c).

• Spiral superconflict scenario is a superconflict of eight
agents, where the distance between an agent’s start po-
sition and the center of the superconflict increases with
each agent. In our scenario the radius varies between 2 m
and 6 m. In result, the higher priority agents often finish
planning before the lower priority agents and since all
the agents are in mutual conflict, the planning process
of the lower priority agents is often invalidated. In both
SDPP and ADPP, the planning cannot be interrupted, and
the agent will adapt to the new situation only after the
currently running planning process finishes. Since the
interruptible version of ADPP is designed to mitigate
this problem, we expect that it will outperform the other
decentralized methods in the scenario (see Figure 2d).

Table I shows the wall-clock runtimes of the four evaluated
algorithms in the four presented scenarios. For the single
superconflict scenario, ADPP and IADPP runtimes are close
to CA, but SDPP shows significant synchronization overheads.
The second scenario in fact contains four independent in-
stances of the single superconflict as used in the first scenario.
The total complexity of this problem is expected to be four
times higher than that of the first scenario. The runtime of
CA is more than quadrupled, while the runtime of the decen-
tralized algorithms stays almost unchanged, which indicates
perfect parallelization of the solution search process. In the
heterogeneous variant of the last scenario, the situations looks
different. As we can see from CA, the total complexity of the
problem is slightly lower than that of the first scenario. Due
to the differences in average planning times in the individual
superconflicts, the wall-clock runtime in SDPP is dominated
by the slowest progressing superconflict. We can see that
both ADPP and IADPP can handle the heterogeneity well.
The spiral superconflict is a challenging scenario for the non-
interruptible asynchronous method. Thus, the ADPP wall-
clock runtime is closer to that of SDPP.

Random scenario

We measured the wall-clock runtime, communication com-
plexity and solution quality of the four algorithms CA, SDPP,
ADPP and IADPP on a series of problem instances that
varied in the number of agents from 30 to 100. The start



(a) Single superconflict scenario example.

(b) Four homogenous superconflicts scenario example.

(c) Four heterogeneous superconflicts scenario example.

(d) Spiral superconflict scenario example.

Figure 2: Superconflict scenarios example – problem configu-
rations (left) and solutions from IADPP algorithm (right).

Figure 3: One instance of random scenario with 90 agents.
The start and goal position of each agent are depicted on the
left, the final solution found is on the right.

CA SDPP ADPP IADPP
single superconflict 10.30 s 26.24 s 11.91 s 9.50 s

four homogeneous superconflicts 45.81 s 26.97 s 13.86 s 11.62 s
four heterogeneous superconflicts 9.084 s 16.01 s 4.89 s 2.59 s

spiral superconflict 6.15 s 21.02 s 17.64 s 3.77 s

Table I: Wall-clock runtimes for four versions of superconflict
scenario (averaged over 10 runs)

and goal vertices for each agent in the scenario were selected
randomly (see Figure 3). The distance between the start and
goal position was taken uniformly from the interval (5, 10)
and we further asserted that no two agents share the start node
and no two agents share the destination node. The agents plan
their trajectory on a 20x20 4-connected grid graph. For each
number of agents we ran 10 different random scenarios and
averaged the results. When any of the algorithms failed to
find a solution to a problem instance, the problem instance
was excluded from the experiment.

The wall-clock runtime represents the real-world time a
particular algorithm would need to converge to a solution.
The wall-clock time for CA is equal to its CPU-time and
can be measured directly. The average wall-clock runtime of
the three decentralized algorithms on random scenarios with
n agents was obtained by running an n concurrent processes
simulation of the algorithm execution. The results for the wall-
clock runtime experiment are shown in Figure 4a. We can see
that all decentralized algorithms can offer a speed-up over the
centralized solver. Further, we find that ADPP and IADPP
provide comparable wall-clock runtime performance, which
is significantly better than the runtime performance of SDPP,
especially in dense problem instances with many conflicting
agents.

Further, we measured the communication complexity by
counting the messages each of the algorithms broadcasts
during the execution. The communication complexity of the
CA algorithm is computed analytically. We assume that the
algorithm is used to coordinate paths in a distributed system in
the following way. All the agents are required to communicate
their objectives to the central solver. When the central solver
finishes the planning, it informs each agent about its new
path. Thus, we use 2n as the communication complexity
of the centralized solver. In Figure 4b we can see that the
decentralized algorithms start exceeding the communication
complexity of the centralized solution for scenarios with
more than 60 agents. Further, we find that IADPP algorithm
has lower communication complexity than ADPP. This can
be explained by looking at how the two algorithms react
to an inform message that invalidates the current running
planning effort. In ADPP, the planning is finished, the new
plan broadcast and only after that a new planning is started.
In IADPP, the planner is restarted quietly, yielding no extra
communication.

Figure 4c shows the quality of the generated solutions. The
reason why decentralized algorithms return on average slightly
worse solutions than the CA algorithm lies in the replanning



condition used by the decentralized algorithms. The condition
states that an agent should replan his trajectory only if the
trajectory is inconsistent with his agentview. In result, the
agent may receive an updated trajectory from a higher-priority
agent that allows for improvement in his current trajectory, but
since the trajectory may be still consistent, the agent will not
exploit such an improvement opportunity.

Finally, Figure 4d shows the failure rates of the individual
algorithms as a function of the number of agents in a scenario.

VI. CONCLUSION

In this paper we introduced an asynchronous decentral-
ized prioritized planning algorithm for space-time cooperative
pathfinding problem. Two variants of the algorithm, ADPP
and IADPP, were presented. We proved the correctness and
termination of both introduced algorithms. The algorithms
were compared to both central and decentralized state-of-the-
art techniques for prioritized planning. Experimental validation
and evaluation showed the benefits and limitations of the
discussed algorithms. The experiments show the advantages
of asynchronous and interruptible execution of the presented
algorithms on a set of superconflict scenarios.

The large scale evaluation on a set of random problem
instances documents a significant reduction of average wall-
clock runtime of both ADPP and IADPP in comparison to the
centralized (approx. 65% time reduction) and the decentralized
synchronous algorithm (approx. 45% time reduction). The
communication complexity is the worst for ADPP, while
IADPP is still better than SDPP, but worse than CA for higher
numbers of agents. The average cost of generated solutions is
similar for all decentralized algorithms and only approx. 10%
worse than CA. The failure ratio of all prioritized methods
is comparable. The experimental validation fully supports the
expectations on the improvements of the ADPP and IADPP
over both CA and SDPP.

REFERENCES

[1] M. Bennewitz, W. Burgard, and S. Thrun. Finding and optimizing
solvable priority schemes for decoupled path planning techniques for
teams of mobile robots. Robotics and Autonomous Systems, 41(2):89–
99, 2002.

[2] K. Mani Chandy and Leslie Lamport. Distributed snapshots: determining
global states of distributed systems. ACM Trans. Comput. Syst., 3(1):63–
75, February 1985.

[3] Michael Erdmann and Tomas Lozano-Pérez. On multiple moving
objects. Algorithmica, 2:1419–1424, 1987.

[4] Carlo Ferrari, Enrico Pagello, Jun Ota, and Tamio Arai. Multirobot
motion coordination in space and time. Robotics and Autonomous
Systems, 25(3-4):219 – 229, 1998.

[5] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems,
Science, and Cybernetics, SSC-4(2):100–107, 1968.

[6] Dave Pottinger. Implementing coordinated movement. Game Developer,
2007.

[7] David Silver. Cooperative pathfinding. In AIIDE, pages 117–122, 2005.
[8] Trevor Scott Standley. Finding optimal solutions to cooperative pathfind-

ing problems. In Maria Fox and David Poole, editors, AAAI. AAAI
Press, 2010.

[9] Jur van den Berg and Mark Overmars. Prioritized motion planning for
multiple robots. In IROS, pages 430–435, 2005.

[10] Prasanna Velagapudi, Katia P. Sycara, and Paul Scerri. Decentralized
prioritized planning in large multirobot teams. In IROS, pages 4603–
4609. IEEE, 2010.

30 40 50 60 70 80 90 100 110 120
0

0,5

1

1,5

2

2,5

CA
SDPP
ADPP
IADPP

Number of Agents

W
a

llc
lo

ck
 R

u
n

tim
e

 (
s)

(a) Average wall-clock runtime for n-agent random scenario

30 40 50 60 70 80 90 100 110 120
0

50

100

150

200

250

300

350

400

450

CA
SDPP
ADPP
IADPP

Number of Agents

N
u

m
b

e
r 

o
f M

e
ss

a
g

e
s

(b) Average messages broadcasted

30 40 50 60 70 80 90 100 110 120
0

0,05

0,1

0,15

0,2

0,25

CA
SDPP
ADPP
IADPP

Number of Agents

C
o

st
 (

s)

(c) Average cost (prolongation of trajectories)

30 40 50 60 70 80 90 100 110 120
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

CA
SDPP
ADPP
IADPP

Number of Agents

F
a

ile
d

 In
st

a
n

ce
s/

A
ll 

In
st

a
n

ce
s 

ra
tio

(d) Failed instances ratio

Figure 4: Results from the random scenario


