
Planning and Acting with Temporal and Hierarchical Decomposition Models

Filip Dvor̆ák, Roman Barták
Faculty of Mathematics and Physics

Charles University in Prague
Prague, Czech Republic

Email: filip@dvorak.fr, roman.bartak@mff.cuni.cz

Arthur Bit-Monnot, Félix Ingrand, Malik Ghallab
LAAS
CNRS

Toulouse, France
Emails: abitmonn@laas.fr, felix@laas.fr, malik@laas.fr

Abstract—This paper reports on FAPE (Flexible Acting and
Planning Environment), a framework integrating acting and
planning on the basis of the ANML modeling language. ANML
is a recent proposal motivated by combining the expressiveness
of the timeline representation with decomposition methods of
hierarchical task networks (HTN). Our current focus is not
efficient temporal planning per se, but the tight integration
of acting and planning. This integration is addressed by:
(i) extending HTN methods with the refinement of planned
actions with skills, expressed in PRS, to map actions into
low-level commands, (ii) interleaving the planning process
with acting, the former performs plan repair and replanning,
while the latter implements the skill-based refinements, and
(iii) executing commands with a dispatching mechanism that
synchronizes observed time points of action effects and events
with planned time.

FAPE has been integrated to a PR2 robot and experimented
in a home-like environment. The paper presents how planning
is performed and integrated with acting and describes briefly
the robotics experiments.

Keywords-planning; robotics; HTN; plan-space;

I. INTRODUCTION

Planning is a form of reasoning, through prediction and
search, about future changes that can be produced in a
system. These changes occur naturally over time. Most con-
tributions to planning abstract away time as state transitions.1

At an abstract level, this is a legitimate approximation as it
simplifies the reasoning. Explicit time is however required
in many applications, e.g., for dealing with synchronization
with events and others actors, for managing deadlines and
time-bounded resources, and for handling concurrency.

Temporal planning comes in two main flavors: (i) ex-
tended state space representations, and (ii) timeline repre-
sentations. The former is based on states (i.e., snapshots
of the entire system) and temporally qualified durations
between states. The latter relies on evolutions of individual
state variables over time (i.e., partial local views of state
trajectories), together with temporal constraints between
elements of timelines.

Most recent works on temporal planning favor the ex-
tended state space representation on the basis of Planning

1This is also the case for many AI approaches about reasoning on change,
e.g., in the LTL, CTL and similar logics.

Domain Description Language (PDDL) with the so-called
durative actions. This drive is explained by the wealth of
search techniques and domain independent heuristics that
have been developed for state space planning, resulting in
significant performance improvements. But of a few excep-
tions, these planners have however a limited handling of
concurrency. The timeline alternative representation permits
naturally to refer to instants beyond the starting and ending
points of actions and to handle various kind of concurrency
requirements. It is also more flexible in the integration of
planning and acting. Timeline planners implement plan-
space search algorithms more often than state-space tech-
niques. However, the plan-space planners have not scaled
up as well as state space planners or HTN planners.

Hierarchical task networks is indeed a representation that
accounts for numerous deployed planning applications of
significant size. HTN planners benefit from domain specific
knowledge expressed as task decomposition methods. In
many domains, methods are very naturally formulated. On
the other side, temporal planning with HTN has not devel-
oped as well as with timelines or state space representations.

The Action Notation Modeling Language (ANML) [1] is
motivated mainly by blending the expressive timeline rep-
resentation with the decomposition of HTN methods. This
paper reports on FAPE and its planner, which is the first, to
our knowledge, to implement ANML.2 Our motivation is not
efficient planning per se, but the tight integration of acting
and temporal planning with task decomposition embedded
on a robotic platform. This is addressed by:

• extending planning decomposition methods (Planning)
with refinements of planned action primitives into low-
level commands (Acting), these refinements are cur-
rently brought by PRS [2] decomposition procedures,

• interleaving the planning process with acting, the for-
mer implements plan repair, extension and replanning,
while the latter follows PRS refinements,

• executing commands with a dispatching mechanism
that synchronizes observed time points of action effects
and events with planned time.

2A preliminary version of this work was presented in the PlanRob
workshop of ICAPS 2014

The FAPE system currently includes modular components
to perform Planning and Acting (as introduced in [3]).

FAPE includes an ANML planner, the first to support
the combination of features of least-commitment plan-space
planning, explicit time maintained by a sparse simple tem-
poral network, resource reasoning, and hierarchical task
decomposition. There are several motivations for our design
choices:
• plan-space planning with least-commitment naturally

supports plan repair, which is essential when acting is
a concern,

• simple temporal network supports efficient consistency
checking and having a sparse network (without saving
constraint propagations) allows us to update temporal
relations using the feedback from execution, and

• hierarchical task decomposition allows for highly scal-
able domain adaptable planning.

FAPE has been integrated to a PR2 robot and experimented
with in a real home-like environment.

This is a work in progress. A formalization of the
planning–acting integration and a full characterization of
the performance of the system are beyond the scope of this
paper. Its contribution is to present FAPE at the planning,
acting, and execution levels, to describe the robotics exper-
iments and report on initial performances. The outline of
the rest of the paper follows these steps, preceded by a brief
section on the state of the art and an introduction to ANML.

II. RELATED WORK

Numerous planners implements the PDDL2.1 extended
state space representation with durative actions, e.g., RPG,
LPG, LAMA, TGP, VHPOP and Crickey. Among these
planners, COLIN [4] is a notable exception that can manage
concurrency and even linear continuous change.

The timeline approach goes back to the IxTeT planner [5]
that reasons on chronicles. A chronicle defines time-points,
temporal constraints between instants, changes in the values
of state variables, persistence of these values over time, and
atemporal constraints over state variables parameters and
values. Other planners such as RAX-PS [6], Europa [7] and
APSI [8], rely on a similar temporal representation with
timelines and tokens representing change and persistence
of the values of state variables over time. Some of these
timelines are directly connected to actions and percepts (to
integrate perception). The organization of the planner along
agents (IDEA) or reactors (T-ReX) offers a hierarchical
representation of the domain. Still the action models rep-
resentation with compatibilities (temporal constraints over
state variables), which tends to spread out the hierarchical
decomposition over more than one compatibilities/reactors,
makes them tedious to write and difficult to debug.

The HTN approach is implemented into numerous plan-
ners such as SHOP2 [9] or SIADEX [10]. The latter inte-
grates time to HTN planning without handling concurrency.

PANDA [11] integrates HTN planning with Partial-Order
Causal-Links into a single framework. It naturally supports
concurrency but has a limited handling of time.

ANML [1] extends the languages used in Europa and
ASPEN with constructs from PDDL together with HTN task
decomposition methods. We are aware of ongoing develop-
ments on the basis of this language3, but to our knowledge,
FAPE is the first system implementing an ANML planner
supporting both task decomposition and temporal planning.

Several systems integrate planning and acting, e.g., with
procedure-based approaches to refine actions into lower level
commands with systems such as RAP [12], but without
time representation. IxTeT-Exec [13] and “Configuration
Planner” [14] are examples similar to our approach for the
timeline planning, but without decomposition methods.

III. REPRESENTATION AND ANML
FAPE relies on the ANML knowledge representation.

ANML is a rich language allowing the user to introduce
planning models in a multitude of ways.

FAPE relies on parametrized state variables, with typed
object variables as parameters, and on timelines over these
state variables. FAPE supports typing and structured types
with inheritance (denoted as <):

type Location;
type Gripper {

variable boolean empty; };
type Locatable{

variable Location myLocation; };
type Robot < Locatable {

variable float battery;
variable Gripper left;};

type Item < Locatable;

The objects of the domain are type instances:

instance Location L1, L2, L3;
instance Robot R1;
instance Item I1;
instance Gripper G1, G2;

Temporally annotated statements are for example:

[50, 70] I1.myLocation == G1 :-> L3;
[end] I1.myLocation == L3;

The statements represent events and persistence condi-
tions. A temporal annotation is either a time point or an
interval defined by two time points. These can be relative to
a context (e.g. an operator, or a planning problem), such
as start, or absolute time points, such as [50,70].
According to the definitions given in [15], we define a
temporal statement to be an assertion over the evolution of
a parameterized state variable. We consider two types of
statements:
• an event specifies a change of the value of

the state variable. For instance, the ANML state-
ment [t1 , t2] r .myLocation == l1 :−> l2 represents

3In particular at NASA Ames Research Center

a change of the state variable myLocation(r) from l1 to
l2 between time t1 and t2, where r, l1 and l2 are object
variables and t1, t2 are time points. The value of the
state variable is l1 at time t1 and l2 at t2; it is undefined
in]t1, t2[(it cannot be unified with any value). An
event referring to a single time point is considered as
being instantaneous, e.g., [t] Switch == On :−> Off
indicates a value of the switch as On at time t and as
Off right after t.

• a persistence condition specifies a constraint on the
value of a state variable over an interval. For instance,
the ANML statement [t1 , t2] s .myLocation == l3
states that myLocation(s) keeps the value l3 over the
interval [t1, t2], where s and l3 are object variables and
t1, t2 are time points.

An action is a partially instantiated operator that may
have several possible decompositions into a partially or-
dered set of actions. Formally, a planing operator is a
tuple (name,maxDuration, P,E,D), where name is the
unique name of the operator, maxDuration represents its
maximal duration (after which the operator is considered
to be failed), P is a set of typed parameters, E is a set
of temporal statements and D is a set of decompositions.
Parameters of an operator are typed object instances as
defined in ANML. They are further used to impose binding
constraints between events and decomposition operators. A
decomposition is a set of partially ordered and partially
instantiated operator references (the action must always
occur in the time interval of its parent action, its parameters
are bound to the values defined in the parent, if any).

action Pick(Robot r, Item i, Location l){
:decomposition{

PickWithGripper(r, r.left, i, l); };
:decomposition{

PickWithGripper(r, r.right, i, l);};};

action PickWithGripper
(Robot r, Gripper g, Item i, Location l){

maxDuration := 10;
[start, end]{ g.empty == true :-> false;

r.myLocation == l;
i.myLocation == l :-> g;

}; };

The power of hierarchical decomposition (as in HTN) lies
in being able to encode expert level knowledge into the do-
main by making explicit the various possible decompositions
of a task, instead of relying on a search mechanism to find
these possible decompositions from basic action models. Of
course, this also depends on the skill of the domain designer,
yet, our experiences with various formalisms indicate that
HTN is well suited for planning in robotics. While the
refinement of the action can be as simple as the action Pick
we have introduced, one can imagine going further, e.g.,
Transport→ TransportByRobot→Move, Pick, Move, Drop,
or even PickWithGripper decomposed with motion planning

techniques.
Resources are represented as state variables with a nu-

meric domain that can be infinite and either discrete or
continuous. The following support events change the value
of the state variable relatively:
• consume(x) reduces the value by x,
• produce(x) increases the value by x,
• use(x) is a composition of consume(x), followed by

produce(x), and
• lend(x) is symmetrical to use(x), first producing, then

consuming.

IV. FAPE INTERNAL STRUCTURES

FAPE planning and acting components rely on several
key data structures that provide efficient handling of state
variable evolutions, constraints and plans. In the following
subsections we present the timelines, temporal network,
constraint network and task network.

A. Timelines and Chronicles

To capture the information on the evolution of state vari-
ables over time, we use timelines with the same semantics
as used in [15, Sec. 14.3]. A timeline is a set of temporal
statements related to a unique state variable. A timeline Φ is
a tuple (x, F,C) where x is a parameterized state variable,
F is a set of temporal statements and C is a set of temporal
constraints and binding constraints over the time points and
object variables in F .

Two essential properties of timelines need to be handled:
consistency and causal support. A timeline (x, F,C) is
consistent when the constraints in C are consistent and
when no pair of assertions in F are possibly conflicting.
Intuitively, two assertions are conflicting when they specify
two possibly distinct values of x at the same time. This may
happen when the two assertions are allowed to overlap in
time with possibly incompatible values (with straightforward
cases related to conflicts between persistence, events and
mixed conflicts). Additional temporal or binding constraints,
called separation constraints, may be needed in C to remove
possible conflicts and make the timeline consistent.

A timeline (x, F,C) supports an assertion α when there
is an assertion β ∈ F that can be used as a causal support
for α and when α can be added to the timeline consistently.
More precisely, when α asserts a persistent value v for x or
a change of value from v to v′ starting at time t, we require
β to establish a value w at a time t′ such that t′ < t and
w = v and that this value can persist consistently until t.
Here also additional constraints, i.e., t′ < t and w = v and
separation constraints, can be needed to make the timeline
support α.

We define a chronicle as a tuple (T,C) where T is a set of
timelines and C is a set of temporal and binding constraints.
We say that a chronicle is consistent if each timeline in T

is consistent, and the union of constraints in the timelines
of T with those of C is consistent.

When a timeline represents a resource state variable, the
concept of causal support disappears, while the consistency
of such timeline is determined according to the resource
reasoning technique tailored for the particular type of the
resource.

B. Resource Reasoning

A resource is an entity that supports or enables the
execution of activities. Resources are, e.g. a single machine
that performs only a single task at a time, or the dynam-
ically changing level of a battery in a satellite. We limit
resources to piece-wise constant evolution, and distinguish
four classes:
• Consumable and producible: represent respectively a

resource that is only be consumed (e.g. limited sup-
ply) and a resource that is only produced (e.g. waste
product).

• Discrete resources represent an entity, whose capacity
is used or lent for some time (e.g. electric outlet, whose
output is limited by the total consumption of connected
devices that use the outlet).

• Reservoirs are resources that support both consump-
tions and productions, e.g. a fuel in a car.

The reasoning for consumable and producible resources is
simple. Consistency of a discrete resource is determined
by the minimal critical sets as described in [16], and an
inconsistence of a discrete resource can be resolved by
adding appropriate precedence constraints (enforcing that
one usage must precede another). Consistency of reservoirs
is determined by balance constraints [17] that also enforce
new temporal constraints and an inconsistence of a reservoir
can be resolved by adding an action, if such action contains
a resource event that leads to consistency (e.g. a production
event for an overconsuming resource).

C. Temporal Constraint Network

The temporal network manager is based on the Simple
Temporal Problem. Consistency is checked on constraint
addition by detecting negative cycles in the distance graph
which is a sufficient and necessary condition of STN con-
sistency. This step is performed by running, upon constraint
addition or removal, an incremental Bellman-Ford algorithm
as presented in [18]. This allows us to efficiently check STN
consistency while keeping a sparse network containing only
constraints that were explicitly stated, thus allowing us to
easily remove constraints from the network.

In general, temporal plans include uncontrollable dura-
tions (e.g. the time for the robot to go from the kitchen
to the living room may vary between 1 and 2 minutes).
These durations should not be squeezed by the planner
temporal propagation and we must use an approach which
guarantees the dynamic controllability (DC) of the plan. We

use the EfficientIDC algorithm [19] to check the dynamic
controllability of a solution plan. We intend to further
integrate it to incrementally enforce DC while planning.

D. Binding Constraint Network

While planning, new object variables are created when
an action is inserted into a plan: every parameter of the
action introduces a new typed object variable (standardiza-
tion apart). These variables appear either as parameters of
state variables or as values of state variables (we can notice
that in the PickWithGripper action). Separation and causal
support constraints on these object variables are managed
as a binding constraint network. This constraint network is
consistent iff there exists an instantiation of variables such
that all equality and non-equality constraints are satisfied.
We use AC-3 to maintain the arc-consistency, which is a
well-known trade-off between earliness of the failures and
computational performance.

E. Task Network

A task network is a set of action nodes. A single action
node n = (α,Dα), where Dα is a set of actions nodes, is
considered a leaf, if Dα = ∅. A node is considered to be
terminal, if it cannot be decomposed. We say that the net-
work is decomposed if all leaves are terminal. Having a task
network, we can both insert new root nodes to the network,
corresponding to an action insertion in plan-space planning,
or we can decompose existing leaves, corresponding to the
HTN planning.

The FAPE planner does not support recursive decompo-
sition methods. Recursive methods raise termination, com-
pleteness and complexity issues.

V. PLANNING

The planning component of FAPE relies on two mecha-
nisms: task decomposition, as in HTN, and resolver inser-
tion, as in Plan-Space Planning (PSP). A planning problem
is defined as a triple (V,O, sinit), where V is a set of state
variables, O is a set of operators and sinit is the initial search
node. Since we are in plan-space, we do not define a goal
state but an initial search node, which is specified with (i)
a set of initial statements, giving the initial values of state
variable and the expected events and persistences, and (ii)
the plan objectives. The statements in (i) are considered to
be causally supported. Those of (ii) need to be supported by
the plan to be built. They are given as a set of temporally
qualified goal statements and/or the tasks to perform (as in
HTN), called here the seed action, e.g.,

action Seed(){
:decomposition{
Transport(anyRobot_, I1, anywhere_, L2);

};
};
[end] I1.myLocation == L3;

In this example, the objective is to achieve the
Transport task and, at the end to have item I1 at location
L3. Note that this specification of the objectives through
assertions and a seed action can be redundant, or even
inconsistent. It is up to the domain designer to make sure that
the domain model and problem specification are consistent.
While it may be useful to specify goals for one state variable
through goal statements and use the seed actions for another
state variable, we discourage the domain designer to use both
for a single state variable, where the semantics is not clear
— there is no syntactical construct to temporarily relate seed
actions with goal statements.

The planner search node is a tuple (Φ, T), where Φ is a
chronicle and T is the task network. We say that a search
node is consistent if both Φ and T are consistent. Planning
proceeds by identifying flaws in a search node and iteratively
applying resolvers until a search node is reached that is
consistent and with no flaws.

A. Flaws and Resolvers

Planning proceeds as in PSP, by addressing the flaws of a
current search node. A search node n = (Φ, T) may contain
the following flaws:

Open goal. An open goal is any statement in Φ that does
not have a causal support. An open goal α may have two
types of resolvers:
• any assertion β ∈ Φ that can be used to support
α; applying such a resolver consists of adding the
causal support constraints and the separation constraints
required to have α supported.

• an action that provides an assertion β that can be used
to support α. Applying such a resolver requires adding
the action together with the support constraints and
separation constraints.

Inconsistent resource. An inconsistent resource can be
resolved by inserting an action, which contains a statement
on the resource that contributes to making it consistent, or by
adding temporal constraints. Inconsistent discrete resources
cannot be resolved by action insertion, while reservoirs can.

Undecomposed action. An undecomposed action is a non
terminal leaf in the task network; such leaf needs to be
decomposed. The resolvers for an undecomposed action
flaw are all of its possible decompositions. Performing a
decomposition as a resolver consists of expanding the action
node with the actions specified by the chosen decomposition
and adding corresponding binding and temporal constraints.

Threat. occurs when there are two timelines they may
represent the same state variable and may collide in time.
Threats are resolved by introducing object separation con-
straints (breaking the possibility that both timelines represent
a single state variable), or adding temporal precedence
constraints, such that the timelines do not collide.

Notice that an action can be introduced into the plan either
by a decomposition or as a resolver of a flaw on a timeline.

Such integrated approach allows, for example, to specify
only the skeletal plan through decompositions (as opposed
to HTN) and leave all the corner cases to be planned as in
PSP. Opposed to PSP, the decompositions provide invaluable
guidance for shaping the search space.

B. Search

Given that a search node π is a solution if it is consistent
and with no flaws, search proceeds by identifying flaws
of π and applying a resolver for one selected flaw while
maintaining the resulting search node consistent.

For the purposes of demonstration, we stick, for the
moment, to the PSP recursive nondeterministic schema [15].

Algorithm 1 Main PSP Algorithm
function PSP(π)

flaws ← FLAWS(π)
if flaws = ∅ then return (π)
end if
select any flaw φ ∈ flaws
resolvers ← RESOLVE(φ,π)
if resolvers = ∅ then return failure
end if
nondeterministically choose a resolver ρ ∈ resolvers
π ← APPLY(ρ, π)
return PSP(π)

end function

The PSP algorithm (see Algorithm 1) at each step of the
recursion deterministically chooses a flaw to resolve (the
choice of the flaw does not impact completeness) and then
chooses nondeterministically the resolver as follows:
• if the application of a resolver returns a failure then

another attempt with a different resolver is performed,
• if all resolvers were tried unsuccessfully then a failure

is returned to the previous choice point.
FAPE uses a multitude of heuristics, some known in plan-

space planning, such as least-flaw ratio, flaw and action
counting, least-committing flaw [11], and some adapted from
state-space planning, such as LM-Cut [20]. Their evaluation
and detailed description is beyond the scope of this paper.

VI. ACTING

In FAPE, Acting and Planning are integrated and inter-
leaved. Acting, is more complex than just Execution of
platform commands. The planned actions are at a too high
level to be directly executed on the platform. From our point
of view, we consider in FAPE the basic functions relevant
to Acting, and introduced in [3], to include: refinement,
instantiation, time management and coordination, non de-
terminism and uncertainty, plan repair. In the current FAPE
implementation, they are all but one (non determinism and
uncertainty) handled.

Acting refines online an action into a collection of closed-
loop functions, referred to here as skills; a skill processes
a sequence (or a continuous stream) of stimulus input from
sensors and output to actuators, in order to trigger motor
forces and control the correct achievement of chosen actions.
We currently use PRS procedures to refine fully instantiated
plan actions into motor commands, as well as to perceive the
environment and inform the Planner of important changes.
The basic motor commands and perception are provided by
ROS actions, nodes and also GenoM3 modules. We plan to
integrate other skill execution frameworks that can handle
different types of acting representation, such as Markov
Decision Processes, Dynamic Bayesian Network and Finite
State Machines.

For dispatching, fully instantiated and scheduled actions
are passed to the Acting component according to their start-
ing time. The planner maintains a partially instantiated plan
(only the necessary binding and temporal constraints are ap-
plied), which represents a set of valid plans (time and object
variables are instantiated when needed). Actions selected for
execution are found by taking the ones whose preconditions
are met and whose start times fit in an execution window
(e.g. we want to get actions that can be started in the next
x seconds). The temporal variables and constraints of those
actions are instantiated and the actions are then returned.
Further calls instantiate more and more actions while the
future instantiation of the actions not yet scheduled is kept
as open as possible. Once an action is finished, acting reports
the actual end time of its execution. This exact date is then
integrated and propagated in the current plan. The action
fails if it takes less or more time than planned. Such temporal
failure is reported to the planner which can then attempt to
repair the plan accordingly. Note that in the general case, the
acting component can also inform the planner that an action
is taking too long, yet, wait for the planner to plan and
send an abort action as a result of this problem (the acting
component does not take the freedom to abort an action
which is running late). An action can also fail because the
skill failed (e.g. despite multiple attempts, the robot cannot
grasp an object, or reach a location). The acting component
then retrieves a description of the changes of the world that
occurred and send it to the planner which integrate these
“unexpected” state variable transitions in its plan.

Considering we have a plan and one of the actions in the
plan fails during the execution, the plan-repair consists of
the following steps: (i) removing the action from the task
network; (ii) removing all the statements introduced by the
failed action from the timelines which shall generate new
flaws; (iii) running the PSP algorithm for the broken plan
until the flaws are resolved. Our repair approach is limited
to the removal of just the one failing action, we do not
consider cascades of other potential failures. There certainly
are cases when the repair does not find a plan and we need
to replan, making the repairing a wasted effort. However,

most of the time repairing the plan is much faster than
replanning and the overall benefit for the responsiveness of
a real-time system is significant, as we shall show in the
following section.

VII. EXPERIMENTAL SETUP AND RESULTS

FAPE is designed to be used as an embedded system. The
current implementation has been experimented on a PR2
to plan service robot type of tasks. For instance, the PR2
moves around in an apartment and detects objects which
are misplaced (e.g. a video tape in the bedroom, or a book
on the dining table) picks them up and stores them away in
their proper location (respectively by the TV set, and in the
bookshelf).4

Actions are dispatched just in time to PRS which executes
them when their start time has arrived. PRS monitors the
proper execution and reports success or failure, using basic
motor commands and perceptions provided by ROS5. In case
of failure, the proper relevant state variable values are sent
back to the planner as an ANML block which needs to be
introduced into the current plan, leading to repair or replan.
The implicit behavior of the actor is always to repair the
plan, while the replanning is only called once the repair
fails completely.

In dynamic environment new events may appear and
actions may fail when carrying out a plan. We have used
a simple simulator in PRS that fails an action with a 50%
probability. Having a 124 simulated situations of an action
failure, Table 1 reports on the number of search nodes
explored when FAPE was either repairing a plan or planning
from scratch. The plans consisted of few dozens actions.

Number of instances
nrepair ≤ 15 102 (82.2%)

15 < nrepair < nplanning 7 (5.7%)
nrepair ≥ nplanning 6 (4.8%)

repair failed 9 (7.3%)

Figure 1. Number of search nodes generated while repairing the plan
(nrepair) with respect to the number of nodes generated while producing
the initial plan (nplanning). Over the experiment, nplanning has an
average value of 319.

The importance of this results lies especially in embedded
and real-time planning, where the responsiveness of the
planner plays a major role. Furthermore, repairing the plan
allows entities that are not affected by the failure (such as
other robots) to keep acting while the plan is being repaired.

VIII. FUTURE WORK

FAPE is the first system including a planner supporting
most ANML features – HTN decompositions, resource rea-

4We rely on some of PR2 basic capabilities :
http://wiki.ros.org/pr2 navigation
http://wiki.ros.org/pr2 tabletop manipulation apps

5http://wiki.ros.org/Robots/PR2

soning, explicit time and plan space planning. It integrates
acting together with planning, where both rely on the same
internal representation for planning, repair, and dispatching.
Each functionality is critical with regard to the efficiency
of the whole system and as such it deserves our attention
in future development. There is always space for improving
the search heuristic and we plan to integrate with domain
specific planners such as motion and manipulation planners.
Meanwhile, the Acting system will provide other skill exe-
cution frameworks than the PRS refinement procedures used
for now (e.g. MDP policies, DBN [21], etc). We also plan
to implement and compare new models of interleaving plan-
ning and acting, where we would concentrate on the decision
making between alternative action refinements, repairing and
replanning — how to recognize and predict when one is
preferred to the other. Similarly, we plan to investigate the
inclusion of delayed methods decomposition. The planner,
instead of expanding all tasks down to the action leaves
may delay and delegate some designated decomposition to
the acting component.

IX. CONCLUSION

We have introduced FAPE, a new framework that inte-
grates Planning and Acting to be embedded in autonomous
real-time system such as robots. Using ANML as an input
planning language, we have the expressivity to plan for com-
plex temporal plans with requirements on concurrent actions
in dynamic environments. We also allow the user to improve
and fine-tune the efficiency of the system by introducing
task decompositions which can efficiently prune the search
in plan space. We have experimented with both Planning and
Acting in on a PR2 robot which performs service robot type
of activities. The development of FAPE continues as a multi-
institutional effort to provide a planning and acting system,
which we would like to see positioned as a system capturing
the state-of-the-art of planning, integrating domain specific
planners while maintaining the expressiveness of ANML and
ease of integration with different types of acting components.

ACKNOWLEDGMENT

This work has been conducted within the EU SAPHARI
project (http://www.saphari.eu/) funded by the E.C. Division
FP7-IST under Contract ICT-287513 and partially supported
by the Czech Science Foundation under the project No.
P103/10/1287.

REFERENCES

[1] D. E. Smith, J. Frank, and W. Cushing, “The ANML
Language,” The ICAPS-08 Workshop on Knowledge
Engineering for Planning and Scheduling (KEPS), 2008.

[2] F. Ingrand, R. Chatilla, R. Alami, and F. Robert, “PRS: a
high level supervision and control language for autonomous
mobile robots,” in IEEE International Conference on
Robotics and Automation, 1996, pp. 43–49.

[3] F. Ingrand and M. Ghallab, “Robotics and Artificial
Intelligence: a Perspective on Deliberation Functions,” AI
Communications, vol. 27, pp. 63–80, Nov. 2013.

[4] A. J. Coles, A. Coles, M. Fox, and D. Long, “COLIN:
Planning with Continuous Linear Numeric Change,” J. Artif.
Intell. Res. (JAIR), vol. 44, pp. 1–96, 2012.

[5] M. Ghallab and H. Laruelle, “Representation and Control in
IxTeT, a Temporal Planner,” in International Conference on
AI Planning Systems, 1994, pp. 61–67.

[6] A. K. Jónsson, P. H. Morris, N. Muscettola, K. Rajan,
and B. Smith, “Planning in Interplanetary Space: Theory
and Practice,” in International Conference on AI Planning
Systems, 2000.

[7] J. Frank and A. K. Jónsson, “Constraint-Based Attribute and
Interval Planning,” Constraints, vol. 8, no. 4, 2003.

[8] S. Fratini, A. Cesta, R. De Benedictis, A. Orlandini, and
R. Rasconi, “APSI-based deliberation in Goal Oriented Au-
tonomous Controllers,” in 11th Symposium on Advanced
Space Technologies in Robotics and Automation (ASTRA),
2011.

[9] D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock,
D. Wu, and F. Yaman, “SHOP2: An HTN Planning System,”
J. Artif. Intell. Res. (JAIR), vol. 20, pp. 379–404, 2003.

[10] L. Castillo, J. Fdez-Olivares, O. Garcı́a-Pérez, and F. Palao,
“Efficiently handling temporal knowledge in an HTN plan-
ner,” Sixteenth international conference on automated plan-
ning and scheduling, ICAPS, 2006.

[11] B. Schattenberg, “Hybrid planning and scheduling,” Ph.D.
dissertation, Ulm University, Institute of Artificial Intelli-
gence, 2009.

[12] R. J. Firby, “An investigation into reactive planning in
complex domains,” in Proceedings of the sixth National
conference on Artificial intelligence. Seattle, WA, 1987, pp.
202–206.

[13] S. Lemai-Chenevier and F. Ingrand, “Interleaving Temporal
Planning and Execution in Robotics Domains,” in Proceed-
ings of the National Conference on Artificial Intelligence,
2004.

[14] M. Di Rocco, F. Pecora, and A. Saffiotti, “When robots
are late: Configuration planning for multiple robots with
dynamic goals,” in 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2013). IEEE,
2013, pp. 9515–5922.

[15] M. Ghallab, D. S. Nau, and P. Traverso, Automated Planning:
Theory and Practice. Morgann Kaufmann, Oct. 2004.

[16] P. Laborie and M. Ghallab, “Planning with sharable resource
constraints,” in International Joint Conference on Artificial
intelligence (IJCAI), 1995, pp. 1643–1649.

[17] P. Laborie, “Algorithms for propagating resource constraints
in AI planning and scheduling: Existing approaches and new
results,” Artificial Intelligence, vol. 143, no. 2, pp. 151–188,
2003.

[18] A. Cesta and A. Oddi, “Gaining Efficiency and Flexibility in
the Simple Temporal Problem,” in TIME, 1996, pp. 45–50.

[19] M. Nilsson, J. Kvarnström, and P. Doherty, “EfficientIDC:
A faster incremental dynamic controllability algorithm,”
in International Conference on Automated Planning and
Scheduling, 2014.

[20] M. Helmert and C. Domshlak, “Landmarks, critical paths
and abstractions: What’s the difference anyway?” in ICAPS.
AAAI, 2009.

[21] G. Infantes, M. Ghallab, and F. Ingrand, “Learning the
behavior model of a robot,” Autonomous Robots Journal, pp.
1–21, Oct. 2010.

