
  

  

1 INTRODUCTION 
Recent advancement of robotic research brought 
non-expensive hardware with sophisticated sensors and 
flexible motoric capabilities. Today robots are ready for 
performing advanced operations, but it seems that their 
major limitations lie in software. In our research, we are 
using an AR.Drone – a quadricopter capable of flying in 
any 3D direction (Figure 1). This drone has no 
manipulators; it is basically a flying robot with several 
sensors including two cameras. Moreover, an AR.Drone 
has some basic stabilization mechanisms and it can be 
controlled by setting pitch, roll, and yaw rather than 
controlling the speed of its rotors. This makes it easier to 
design software for AR.Drones as programmers can focus 
on higher levels of control. Still the quadricopter is 
performing in a real-life environment that is dynamic, 
continuous, partially observable, and stochastic [8]. So the 
software must run in real time, the environment is not 
always as the agent perceives it, and finally, the things do 
not always work as the agent intends. 

 
Fig 1. AR.Drone by Parrot Inc. 

In this paper we will describe a controller for autonomous 
landing of an AR.Drone. We will show how information 
about the landing point, which is obtained by analyzing 
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pictures from the drone camera, is transformed to distance 
measures used as an input for a PID controller. We will 
also present an application developed to demonstrate the 
proposed approach. 
The paper is organized as follows. We will first describe 
hardware of the AR.Drone platform and the ways it 
communicates with a computer connected via WiFi. After 
that we will propose a method for measuring distance 
between the drone and the landing point. The next section 
will be devoted to the description of used PID controller. 
Presentation of the DroneLander – an application to 
present the proposed techniques in practice – and a 
summary of experimental results will conclude the paper. 

2 AR.DRONE PLATFORM 
AR.Drone by Parrot Inc. [7] is a high-tech flying toy 
(Figure 1) that can be used for augmented-reality games. 
Technically, it is a quadricopter with sensors and a 
controller. As this device is very light (360-400 grams) 
and therefore quite prone to wind disturbances, it is better 
suited for indoor environments. To a certain extent, it can 
operate outdoors as well. Its main battery allows operation 
for about 13 minutes. For our work, we used the original 
AR.Drone, but there exists a newer version AR.Drone 2 
with better parameters. We describe here the selected 
parameters of the original AR.Drone as they influenced 
the decisions done. 
AR.Drone is controlled by a 32-bit 468 MHz ARM9 RISC 
processor with 128MB DDR-RAM running at 200MHz. 
This processing architecture controls the basic operations 
of the drone including stabilization. It is possible to install 
own programs there but due to a limited computing power 
we have decided to use an external computer. 
The core set of sensors consists of a 3-axis accelerometer, 
a 1-axis gyroscope, a 2-axis gyroscope, an ultrasound 
sensor (sonar), and a vertical downside camera. The 1-axis 
gyroscope measures yaw with the error 12° per minute 
during the flight or 4° per minute in the steady state. The 
2-axis gyroscope measures pitch and roll with the error 
0.2° per minute (see Figure 2 for the explanation of the 
yaw, roll, and pitch notions). 
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Fig 2. Roll, yaw, and pitch. 

The ultrasonic sensor measures the altitude of the drone in 
the range 20-600 cm. The CMOS vertical camera directs 
downward; it has a resolution 176 × 144 pixels 
corresponding to viewing angles 45° × 35° and provides a 
video-stream with 60 frames per second. The system uses 
this camera to estimate the speed of the drone via 
measuring the optical flow. It is also used for calibration 
of other sensors. There is a higher resolution horizontal 
camera too, but we will not use it for landing. 
The quadricopter can be controlled via WiFi from an 
external device such as a computer. All the 
communication is done using three UDP channels. A 
Command channel allows sending commands to the drone. 
The device accepts the following commands with 
frequency 30Hz: takeoff, land, set limits (maximal 
declination, speed, and altitude), calibrate sensors, swap 
cameras (see below), set rotation speeds of rotors, set 
pitch, roll, yaw, and vertical speed. A NavData channel 
provides information about the drone state again with 
frequency 30Hz. The following information is provided: 
drone state (flying, steady, landing, takeoff, calibration, 
booting), sensor data (current pitch, roll, yaw, altitude, 
battery level, and speed in all axes). Finally, a Stream 
channel provides visual information from the cameras. 
Due to a limited bandwidth, only view from a single 
camera is available (or picture-in-picture). 
Although the AR.Drone has a native command to land, it 
basically means go down without any control where to go. 
Therefore we decided to extend this functionality by 
defining a visual landing pattern and controlling the drone 
to land exactly at a given location. 

3 MEASURING DISTANCE TO THE GOAL 
POSITION 

To control the drone we first need to know its exact 
position with respect to the goal position. The difference 
between the current position and the goal position is then 
fed to a controller that, briefly speaking, minimizes this 
difference by controlling drone actions (see the next 
section). There exist many approaches for localizing 
drones. Some of them are using external navigation or 
specific sensors such as GPS; these are not appropriate for 
our purposes as AR.Drone does not use such sensors and it 
is mainly operating indoors. Others are based on purely 
visual navigation for example using an H-shaped landing 
pattern [10] or a specific circular pattern [5]. These seem 
more suitable for AR-Drone, but as they require better 

visual sensors and they do not support horizontal 
orientation, we decided for another approach. Our 
motivation is exploiting an easy-to-made and customizable 
landing pattern that makes target localization reliable. 
For landing as well as for hovering above the landing 
position we need to know where the landing point is 
located. We use a specific landing graphical pattern 
consisting of two colored discs. There are several reasons 
for choosing this pattern. First, it uniquely defines the 
landing point – we use the point between the discs 
(marked by a cross in Figure 3) – as well as the possible 
orientation. Second, it is easy and robust to identify the 
colored circles in the picture using the blob detection 
algorithm [9] and some simple picture pre-processing 
techniques. We gave the technical details of this method 
and its comparison with other methods in the paper [1]. 
 

 
 
 
 
 

 
Fig 3. Landing pattern consisting of two colored discs (the cross 
identifies the point that we use for landing). 

Obviously, to detect the landing pattern we use the bottom 
camera of AR.Drone, which is the main source of 
localization information for us. The picture processing 
software OpenCV [6] is used to identify the landing point 
in the picture, but we still need to convert this information 
to metric information about the distance between the drone 
and the landing point. In this section we shall describe the 
method to measure that distance. 
Basically, we measure the distance using four attributes in 
the coordinate system: altitude (vertical distance in 
meters), front and side distances (horizontal distance in 
meters), and rotation (Figure 4). The information about 
altitude and rotation is given directly by the sensors; in 
particular the ultrasound sensor provides altitude in meters 
and the gyroscope provides yaw in degrees. It remains to 
compute the horizontal distances that are not directly 
accessible from the sensors. This will be done by 
analyzing the position of the landing point in the picture 
captured by the bottom camera, using information about 
altitude, and applying some trigonometry.  
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Fig  4. Relative position of drone and target. 
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Figure 5 shows the scheme of the situation that is used to 
compute the horizontal distances. Drone camera is at point 
D right above the point V; T is the target point; C1 and C2 
are the edges of the area visible by the camera, and x is the 
altitude measured by the ultrasound sensor. In practice we 
use x to approximate the real altitude v as the angle α is 
usually small and the ultrasound sensor has some small 
error anyway. Note however, that the camera does not 
provide the other measures directly; it gives a picture as 
shown in Figure 5 (top left). Points T, S, C1, C2 are seen as 
T’, S’, C’1, C’2 in the camera. We compute the real 
distance in meters between T and V using the formula:  
 dist(T,V) = v · tan(α+β). (1) 
The ultrasound sonar gives altitude x (that approximates v) 
in meters (with centimeter accuracy). Angle α is also 
known from the sensors – it is either pitch for the 
forward/backward distance or roll for the left/right 
distance. Angle β is a relative angle between the actual 
drone position and the target so it proportionally 
corresponds to the distance between T’ and S’. We 
measure this distance in pixels from the camera picture. 
This is not the real distance of points but the distance of 
their projections in the camera picture. We already know 
the pixel distance between points C’1 and S’ (which is 
defined by the camera resolution) and the angle γ (view 
angle) from the camera properties (±72 pixels and ±17.5° 
for the longitudinal axis, ±88 pixels and ±22.5° for the 
lateral axis). Hence can compute the angle β using the 
formula:  
β = arctan(tan(γ/2) * pixel_dist(T’,S’) / pixel_dist(C’1,S’)). (2) 

For the forward/backward distance, the formula looks like: 
β = arctan(tan(17.5) * vert_pixel_dist(T’,S’) / 72).  (2a) 

For the side distance, the formula looks like:  
β = arctan(tan(22.5) * horiz_pixel_dist(T’,S’) / 88).   (2b) 

Since we have computed the real relative position of the 
target (defined by a distances/angle in meters/degrees 
between target and drone for each axis) we can make the 
drone to approach the target using this information – to 
minimize the distances/angles (called errors) to a zero. 

4 DRONE CONTROLLER 
During the landing procedure, we control the drone by 
repeating the following steps: 
1. identifying the landing point in a video frame,  
2. finding the error – the real distance in meters 

between the current position and the target position,  
3. feeding the error to a controller, 
4. using the controller output to move the drone. 

As the main control mechanism, the proportional– 
integrative–derivative (PID) controllers are used. A PID 
controller is a generic control loop feedback mechanism 
widely used in industrial control systems [4]. Its input is a 
required value (attribute or property) of the controlled 
object; during the operation, the PID controller measures 
this value and based on the difference between it and the 
required value (the error) it changes the actuation.  
We use four PID controllers to control the drone, namely 
for forward/backward movement, for left/right movement, 

for rotation, and for altitude. The required value input for 
one PID controller is the target point x coordinate and the 
output is directly used for the low-level drone interface as 
pitch and so on: the target point y coordinate is 
transformed by the respective controller to roll, the 
rotation to yaw and the altitude to vertical speed, 
respectively. In the previous section, we described how to 
compute the errors for all these controllers. The 
computation procedures behind all these controllers are 
identical; the only difference is in the setting of 
proportional, integral and derivative gain constants for the 
four different controllers. Even these constants were tuned 
experimentally; they result in the PID controllers having 
sufficient effect on the drone flight. Note also that we are 
not directly controlling the rotation speeds of propellers; 
instead, the controllers output required pitch, roll, yaw, 
and the vertical speed according to the errors on their 
respective inputs. These outputs are then fed to the drone 
low-level control software described in Section 2, which 
results in the drone moving in the requested direction. 
As mentioned above, the minimal altitude recognized by 
the ultrasonic sensor is about 25 cm. At this altitude the 
landing target is hardly visible by the bottom camera as the 
target pattern is too close to the camera. Also when light 
drones are close to the surface, their own propellers cause 
a lot of turbulence and the drones become very hard to 
control at low altitudes. Therefore we stop the landing 
procedure at the altitude of 30 cm where we switch off the 
motors. Hence this final stage of landing resembles a 
controlled fall. If one switches the drone motors at this low 
level, it does not usually impose any danger of breaking 
the drone structure. That is because the drone does not fall 
from high altitude and because the drone chassis is usually 
constructed shockproof enough to withstand exactly such 
kind of landing. 

4.1 Unexpected Events  

It may happen that the target is not identified in the current 
video frame. There can be several reasons for that situation 
including a noise in the picture causing the blob detection 
algorithm to fail and unexpected movement of the drone 

 
Fig 5. A schematic drone position (a side view) and the view from 
the bottom camera (top left). Points T, S, C1, C2 are seen as T’, S’, 
C’1, C’2. 



  

(user intervention, wind, turbulences etc.). In the default 
mode, we simply assume that the target is still at the 
original position (although temporarily invisible) and we 
move the drone in the direction of the last time seen 
position of the target. However, if the target is not 
identified in ten consecutive video frames, we interrupt the 
landing procedure and switch the drone to the hovering 
mode to prevent unwanted movement. This approach 
recovers easily from mistakes in the pattern recognition 
procedure and ensures that the drone moves continuously. 
For the second situation when the drone moves 
inappropriately to the intentions, we can optionally use a 
more proactive approach. Based on data from the 
accelerometer, we can detect the drone movement 
difference (measure passed distance by the accelerometer, 
this is also called accelerometer based odometry). We can 
compute the distance from the last known position of the 
target by summing all the acceleration values for each axis 
since the target got lost and adding this summations to the 
appropriate last known target position abscissa. By this 
information we have computed the estimated location of 
the target even if this location is outside the visibility area 
of the bottom camera. If such situation happens, we move 
the drone towards the expected location. However, if the 
target does not appear in the camera view according to the 
estimated location where it should already be visible, we 
interrupt this mode and switch the drone to the hovering 
mode to prevent unwanted moves like in the first case. The 
accelerometer can be used to balance sudden changes of 
drone location, but due to its nature, it cannot provide 
accurate measurements for a long time and hence it is used 
just as a short-term correction facility. 

4.2 PID controller 

A PID controller (see Figure 6) is a control loop feedback 
mechanism with specifically defined transfer function – a 
function that processes the input values to the output 
values in every cycle of the loop while aiming for 
minimizing the error. In our case the input is the computed 
error (distance/angle in meters/degrees, see the Section 3) 
and the output is a control value for the drone low-level 
controller. A point where the error of the system is 
minimal is called a setpoint and represents the target the 
controller wants to reach (and also the input value for the 
controller). The transfer function is divided to three parts – 
the so called proportional, integrative and derivative parts. 
Input of each part is the same as the input of the whole 
transfer function and the output of the transfer function is 
the sum of outputs of the three individual parts. It should 
also be noted that the input and output values do not 
necessarily have to have the same units; for example, in 
our case the input is the error of the current control system 
value but the output is the requested pitch, roll, yaw, and 
vertical speed as explained earlier in this section.  
The output of the proportional part is directly dependent 
on its input multiplied by the constant P (proportional 
gain). We can see that this output value will always move 
the system in a direction towards the setpoint. The power 
of this movement depends on the value of the error and on 
the value of the constant P. When using this part on 
systems which are affected by inertia forces, there is a 

danger of reaching the setpoint but due to these inertia 
forces overshooting and departing it again, then stopping, 
returning and so on. That can lead in a long term to 
oscillation around the setpoint.  
The output of the integrative part is the sum of all errors 
since the start multiplied by the constant I (reset). We can 
see that the magnitude of the output of this part grows over 
time if the error is not zero. This is useful for example in 
situations when the system can’t reach the setpoint 
because of external impact. When the error does not 
minimize over time, the power of the movement generated 
by this part increases and consecutively can rise high 
enough to overcome the blocking forces. 
The output of the derivative part is the magnitude of the 
error change (current cycle error value compared to the 
previous cycle error value) multiplied by the constant D 
(rate). The power of this movement depends on the speed 
of the system towards the setpoint (“velocity made good”) 
and on the value of the constant D. Obviously using the 
output value of this part we can determine that the system 
is approaching the setpoint too quickly. In such case, we 
can start to slow down, which may prevent the unwanted 
oscillation around the setpoint as mentioned above. For 
example when the drone is near the target, but it still has 
high velocity, the result of the proportional part will be 
near the zero, but the result of the derivative part will be a 
higher value. The sum of these two values will be sent to 
the drone and will cause the breaking movement. 
The outputs of the controllers are values saying how much 
percent of the maximum allowed tilt/vertical speed/angular 
speed the drone should execute. Simplified pseudo code of 
the PID algorithm is as follows: 
do forever: 

read(current_position); 
current_error = setpoint – current_position; 
sum_error = sum_error + current_error; 
output = P*current_error + I*sum_error + 

D*(current_error – last_error); 
last_error = current_error; 

When the constants P, I, and D are set correctly and 
therefore each part has appropriate impact to controller 
output, the PID controller moves the drone towards the 
setpoint flawlessly and quickly without unnecessary 
movements and oscillations and stops and stays over it 
even when the flying conditions are not perfect. 
In high abstraction we can imagine a use of the PID 
controller as an impact of a conjunction of three forces to 
the drone – each with unique characteristic. The first force 
tends to move the drone always directly to the target, the 
second force helps to reach the target when the difference 
between the position and the target is small and the third 
force slows down the drone as it approaches the target. 

Fig  6. PID controller. 



  

4.3 Improving the controller 

The outputs from the PID controllers may be 
post-processed before sending them to the drone. In our 
code, we have used for example the following 
improvements which do not change the overall operation 
but which fine-tune the flight: 

yaw_out = 10 * yaw / max(horiz_dist, 0.1); 

This makes the angular rotation speed dependent on the 
horizontal distance from the target. If the horizontal 
distance is higher than 0.1 meters, the angular rotation 
speed is decreased proportionally. Using this modification 
decreases the probability of losing the target while making 
risky moves such as rotation in situations when the target 
is near the middle of camera view. Another refinement 
concerns the vertical (altitude) speed: 
alt_speed_out = 5 * alt_speed / max(angle, 5); 

This decreases the altitude speed when the difference from 
the angle we want to reach is bigger than 5 degrees. This 
formula leads to slowdown of the drone so that the drone 
has more time to rotate and reach the required angle. 
These optimizations are used to enhance the stability and 
reliability of the landing procedure. 
When the target is not recognized successfully, several 
problems may arise. When a wrong place is recognized as 
a target or the target is not where it was supposed to be 
(e.g. while rediscovering the target after inaccurate 
estimation), this target position change is fed to the 
controller. Since this wrong position might be far away 
from the last recognized position, the target shift can be 
interpreted by the controller as a jump. Even if this jump is 
not real, output of the derivative part of the controller will 
be high (because of the big change of the target position). 
Consecutively, the overall output of the controller would 
be very high which would result in rapid move of the 
drone. Such movements may be very dangerous for the 
system stability as such and transitively also for the chance 
of successful landing. This problem can be eliminated by 
setting a threshold for the maximum target position change 
speed (for example by limiting the maximum allowed 
value of the derivative part and/or by limiting the 
maximum allowed distance of two successive target 
positions) and therefore restricting the impact of the 
controller to the drone in such moments. 

Secondly, the distance of the drone from the target is 
computed using data acquired from the sensors. Since the 
sensors are real-world sensors and not precise theoretical 
model sensors, their output is noisy (and may be in 
principle noisy with different deviations in every 
measurement). These deviations may produce incorrect 
error values used as inputs for the control loop, which may 
then result in dangerous jerky movements of the drone. 
This problem can be often eliminated by very simple 
filtering of the sensor data, for example by using floating 
average over a small number of consecutive measurements 
or using a Kalman filter if the characteristics of the 
variance of a measured values are known. 

5 USER INTERACTION  
For controlling the drone, we use the ControlTower 
application [3] that we extended by a new module named 
DroneLander. This module is invoked from ControlTower 
and provides its own user interface for defining the 
landing pattern and for basic control of the drone (buttons 
on the very left of Figure 7).  
DroneLander uses the bottom camera of AR.Drone as the 
major information source for landing. The user can freeze 
a camera picture and set the HSV (hue, saturation, and 
value/brightness) parameters to identify two color blobs in 
the picture (left and center panels at Figure 7). Anytime 
when the software recognizes these two blobs in the video 
stream, it displays a red circle between them that marks 
the landing point (see the right most panel in Figure 7). 
The user can also optionally select the horizontal landing 
angle (yaw) of the drone marked by an arrow with respect 
to these two blobs (if not activated then the drone simply 
lands with any orientation).  
The flight of a drone can be controlled manually through 
the keyboard or a game controller via the ControlTower 
application. When the user (pilot) spots the landing pattern 
in the picture from the bottom camera, it is possible to start 
the landing process. We provide two options for using the 
landing pattern. Either the drone lands onto the pattern 
(land on target) or the drone stays steadily directly above 
the pattern at the current height and at the required angle 
(if activated) (lock on target). The unexpected drone 
movements caused by external forces (wind, turbulence, 
user interaction etc.) are corrected by the landing software 

Fig 7. DroneLander user interface 



  

via the implemented controller. When the landing pattern 
disappears from the camera view, the system has a simple 
function of trying to find the pattern by going in the 
direction where the pattern was lost (estimate target).  

6 EXPERIMENTAL RESULTS  
We evaluated the proposed autonomous landing software 
experimentally by measuring reliability, precision, and 
speed of the landing process under different conditions. In 
particular, we did two sets of experiments. In one set, there 
was no external disturbance of the landing process beyond 
the classical environmental conditions in the room. In the 
second set, we added a fan at the altitude of 50 cm and 
directed it towards the landing area in the distance about 
150 cm. The motivation was to see how the drone 
controller balances external interference with the landing 
process. All experiments were done indoors; we placed the 
drone right above the landing area at different altitudes 
(50-200 cm) and with different rotation with respect to the 
landing pattern (0°, 90°, 180°). For each combination of 
parameters, we repeated the landing process until we got 
four successful landings. Then we measured the success 
rate as 4/#landings. For the successful landings we 
measured the time to land (in seconds) and the distance of 
the drone (its bottom camera) from the landing point (in 
centimeters).  
Figure 8 shows the results as a function of the starting 
altitude. We differentiate between the initial orientations 
and having the fan switched on and off. The results 
confirm the expected behavior. Time to land increases 
with the increased altitude and with the increased initial 
rotation, as the drone needs to do more operations to land. 
When the fan is on (marked as fan in the figure), the 
landing time is also longer, which is expected. Adding 
wind also decreases significantly the success rate and the 
precision of landing, which is again an expected result. 
The reson is that AR.Drone is very light and it is easy to 
be blowed away. This is especially critical close to the 
landing target as the drone may easily lose the target from 
the camera view. 
In summary, under the normal conditions, the drone is 
landing reliably and with good precision. Under the windy 

conditions, that are however not expected indoors, the 
success of landing decreases significantly. Using heavier 
drones would probably make it easier to resist wind. 

7 CONCLUSIONS 
Autonomous landing is one of the key operations of 
autonomous flying drones. It is especially important to use 
a flexible approach that does not require expensive ground 
equipment. In this paper we described a mechanism for 
fully autonomous landing of AR.Drone that uses a simple 
and easy-to-made graphical pattern to identify the landing 
area. We use only the existing sensors in AR.Drone 
including the bottom camera. The preliminary 
experimental results showed that the landing procedure is 
reliable under normal conditions. 
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Fig 8. Dependence of landing time (left), precision (middle), and reliability (right) on the initial altitude (50, 100, 150, 200 cm) and orientation 
relatively to the target (0°, 90°, 180°). 


