

1 INTRODUCTION
Recent advancement of robotic research brought
non-expensive hardware with sophisticated sensors and
flexible motoric capabilities. Today robots are ready for
performing advanced operations, but it seems that their
major limitations lie in software. In our research, we are
using an AR.Drone – a quadricopter capable of flying in
any 3D direction (Figure 1). This drone has no
manipulators; it is basically a flying robot with several
sensors including two cameras. Moreover, an AR.Drone
has some basic stabilization mechanisms and it can be
controlled by setting pitch, roll, and yaw rather than
controlling the speed of its rotors. This makes it easier to
design software for AR.Drones as programmers can focus
on higher levels of control. Still the quadricopter is
performing in a real-life environment that is dynamic,
continuous, partially observable, and stochastic [8]. So the
software must run in real time, the environment is not
always as the agent perceives it, and finally, the things do
not always work as the agent intends.

Fig 1. AR.Drone by Parrot Inc.

In this paper we will describe a controller for autonomous
landing of an AR.Drone. We will show how information
about the landing point, which is obtained by analyzing

This work is supported by the Czech Science Foundation under the
projects No. P103/10/1287 and P202/12/G061.

pictures from the drone camera, is transformed to distance
measures used as an input for a PID controller. We will
also present an application developed to demonstrate the
proposed approach.
The paper is organized as follows. We will first describe
hardware of the AR.Drone platform and the ways it
communicates with a computer connected via WiFi. After
that we will propose a method for measuring distance
between the drone and the landing point. The next section
will be devoted to the description of used PID controller.
Presentation of the DroneLander – an application to
present the proposed techniques in practice – and a
summary of experimental results will conclude the paper.

2 AR.DRONE PLATFORM
AR.Drone by Parrot Inc. [7] is a high-tech flying toy
(Figure 1) that can be used for augmented-reality games.
Technically, it is a quadricopter with sensors and a
controller. As this device is very light (360-400 grams)
and therefore quite prone to wind disturbances, it is better
suited for indoor environments. To a certain extent, it can
operate outdoors as well. Its main battery allows operation
for about 13 minutes. For our work, we used the original
AR.Drone, but there exists a newer version AR.Drone 2
with better parameters. We describe here the selected
parameters of the original AR.Drone as they influenced
the decisions done.
AR.Drone is controlled by a 32-bit 468 MHz ARM9 RISC
processor with 128MB DDR-RAM running at 200MHz.
This processing architecture controls the basic operations
of the drone including stabilization. It is possible to install
own programs there but due to a limited computing power
we have decided to use an external computer.
The core set of sensors consists of a 3-axis accelerometer,
a 1-axis gyroscope, a 2-axis gyroscope, an ultrasound
sensor (sonar), and a vertical downside camera. The 1-axis
gyroscope measures yaw with the error 12° per minute
during the flight or 4° per minute in the steady state. The
2-axis gyroscope measures pitch and roll with the error
0.2° per minute (see Figure 2 for the explanation of the
yaw, roll, and pitch notions).

A Controller for Autonomous Landing of AR.Drone

Roman Barták, Andrej Hraško, David Obdržálek
Charles University in Prague, Faculty of Mathematics and Physics, Malostranské nám. 25, Praha, Czech Republic

E-mail: bartak@ktiml.mff.cuni.cz, andrej@hrasko.eu, david.obdrzalek@mff.cuni.cz

Abstract: In recent years, many so called “robotic toys” appeared at the market. Though these devices are called toys
and they are primarily intended for games, they provide a set of sensors and actuators that can be controlled from
a computer. Hence these robotic devices may serve as non-expensive research tools, in particular for developing
advanced software for controlling them. This paper describes a controller for landing of an AR.Drone, a quadricopter
marketed by Parrot Inc. This controller is designed for fully autonomous landing to a given visual pattern and for
hovering above the pattern. We will show how to collect input information for the controller and how to use it in
a classical PID controller.
Key Words: AR.Drone, Landing, PID Controller

Fig 2. Roll, yaw, and pitch.

The ultrasonic sensor measures the altitude of the drone in
the range 20-600 cm. The CMOS vertical camera directs
downward; it has a resolution 176 × 144 pixels
corresponding to viewing angles 45° × 35° and provides a
video-stream with 60 frames per second. The system uses
this camera to estimate the speed of the drone via
measuring the optical flow. It is also used for calibration
of other sensors. There is a higher resolution horizontal
camera too, but we will not use it for landing.
The quadricopter can be controlled via WiFi from an
external device such as a computer. All the
communication is done using three UDP channels. A
Command channel allows sending commands to the drone.
The device accepts the following commands with
frequency 30Hz: takeoff, land, set limits (maximal
declination, speed, and altitude), calibrate sensors, swap
cameras (see below), set rotation speeds of rotors, set
pitch, roll, yaw, and vertical speed. A NavData channel
provides information about the drone state again with
frequency 30Hz. The following information is provided:
drone state (flying, steady, landing, takeoff, calibration,
booting), sensor data (current pitch, roll, yaw, altitude,
battery level, and speed in all axes). Finally, a Stream
channel provides visual information from the cameras.
Due to a limited bandwidth, only view from a single
camera is available (or picture-in-picture).
Although the AR.Drone has a native command to land, it
basically means go down without any control where to go.
Therefore we decided to extend this functionality by
defining a visual landing pattern and controlling the drone
to land exactly at a given location.

3 MEASURING DISTANCE TO THE GOAL
POSITION

To control the drone we first need to know its exact
position with respect to the goal position. The difference
between the current position and the goal position is then
fed to a controller that, briefly speaking, minimizes this
difference by controlling drone actions (see the next
section). There exist many approaches for localizing
drones. Some of them are using external navigation or
specific sensors such as GPS; these are not appropriate for
our purposes as AR.Drone does not use such sensors and it
is mainly operating indoors. Others are based on purely
visual navigation for example using an H-shaped landing
pattern [10] or a specific circular pattern [5]. These seem
more suitable for AR-Drone, but as they require better

visual sensors and they do not support horizontal
orientation, we decided for another approach. Our
motivation is exploiting an easy-to-made and customizable
landing pattern that makes target localization reliable.
For landing as well as for hovering above the landing
position we need to know where the landing point is
located. We use a specific landing graphical pattern
consisting of two colored discs. There are several reasons
for choosing this pattern. First, it uniquely defines the
landing point – we use the point between the discs
(marked by a cross in Figure 3) – as well as the possible
orientation. Second, it is easy and robust to identify the
colored circles in the picture using the blob detection
algorithm [9] and some simple picture pre-processing
techniques. We gave the technical details of this method
and its comparison with other methods in the paper [1].

Fig 3. Landing pattern consisting of two colored discs (the cross
identifies the point that we use for landing).

Obviously, to detect the landing pattern we use the bottom
camera of AR.Drone, which is the main source of
localization information for us. The picture processing
software OpenCV [6] is used to identify the landing point
in the picture, but we still need to convert this information
to metric information about the distance between the drone
and the landing point. In this section we shall describe the
method to measure that distance.
Basically, we measure the distance using four attributes in
the coordinate system: altitude (vertical distance in
meters), front and side distances (horizontal distance in
meters), and rotation (Figure 4). The information about
altitude and rotation is given directly by the sensors; in
particular the ultrasound sensor provides altitude in meters
and the gyroscope provides yaw in degrees. It remains to
compute the horizontal distances that are not directly
accessible from the sensors. This will be done by
analyzing the position of the landing point in the picture
captured by the bottom camera, using information about
altitude, and applying some trigonometry.

×

Yaw
Roll

Pitch

Fig 4. Relative position of drone and target.

altitude	

side	 distance	

side	 view	 top	 view	

front	 distance	

side	 distance	

rotation	

Figure 5 shows the scheme of the situation that is used to
compute the horizontal distances. Drone camera is at point
D right above the point V; T is the target point; C1 and C2
are the edges of the area visible by the camera, and x is the
altitude measured by the ultrasound sensor. In practice we
use x to approximate the real altitude v as the angle α is
usually small and the ultrasound sensor has some small
error anyway. Note however, that the camera does not
provide the other measures directly; it gives a picture as
shown in Figure 5 (top left). Points T, S, C1, C2 are seen as
T’, S’, C’1, C’2 in the camera. We compute the real
distance in meters between T and V using the formula:
 dist(T,V) = v · tan(α+β). (1)
The ultrasound sonar gives altitude x (that approximates v)
in meters (with centimeter accuracy). Angle α is also
known from the sensors – it is either pitch for the
forward/backward distance or roll for the left/right
distance. Angle β is a relative angle between the actual
drone position and the target so it proportionally
corresponds to the distance between T’ and S’. We
measure this distance in pixels from the camera picture.
This is not the real distance of points but the distance of
their projections in the camera picture. We already know
the pixel distance between points C’1 and S’ (which is
defined by the camera resolution) and the angle γ (view
angle) from the camera properties (±72 pixels and ±17.5°
for the longitudinal axis, ±88 pixels and ±22.5° for the
lateral axis). Hence can compute the angle β using the
formula:
β = arctan(tan(γ/2) * pixel_dist(T’,S’) / pixel_dist(C’1,S’)). (2)

For the forward/backward distance, the formula looks like:
β = arctan(tan(17.5) * vert_pixel_dist(T’,S’) / 72). (2a)

For the side distance, the formula looks like:
β = arctan(tan(22.5) * horiz_pixel_dist(T’,S’) / 88). (2b)

Since we have computed the real relative position of the
target (defined by a distances/angle in meters/degrees
between target and drone for each axis) we can make the
drone to approach the target using this information – to
minimize the distances/angles (called errors) to a zero.

4 DRONE CONTROLLER
During the landing procedure, we control the drone by
repeating the following steps:
1. identifying the landing point in a video frame,
2. finding the error – the real distance in meters

between the current position and the target position,
3. feeding the error to a controller,
4. using the controller output to move the drone.

As the main control mechanism, the proportional–
integrative–derivative (PID) controllers are used. A PID
controller is a generic control loop feedback mechanism
widely used in industrial control systems [4]. Its input is a
required value (attribute or property) of the controlled
object; during the operation, the PID controller measures
this value and based on the difference between it and the
required value (the error) it changes the actuation.
We use four PID controllers to control the drone, namely
for forward/backward movement, for left/right movement,

for rotation, and for altitude. The required value input for
one PID controller is the target point x coordinate and the
output is directly used for the low-level drone interface as
pitch and so on: the target point y coordinate is
transformed by the respective controller to roll, the
rotation to yaw and the altitude to vertical speed,
respectively. In the previous section, we described how to
compute the errors for all these controllers. The
computation procedures behind all these controllers are
identical; the only difference is in the setting of
proportional, integral and derivative gain constants for the
four different controllers. Even these constants were tuned
experimentally; they result in the PID controllers having
sufficient effect on the drone flight. Note also that we are
not directly controlling the rotation speeds of propellers;
instead, the controllers output required pitch, roll, yaw,
and the vertical speed according to the errors on their
respective inputs. These outputs are then fed to the drone
low-level control software described in Section 2, which
results in the drone moving in the requested direction.
As mentioned above, the minimal altitude recognized by
the ultrasonic sensor is about 25 cm. At this altitude the
landing target is hardly visible by the bottom camera as the
target pattern is too close to the camera. Also when light
drones are close to the surface, their own propellers cause
a lot of turbulence and the drones become very hard to
control at low altitudes. Therefore we stop the landing
procedure at the altitude of 30 cm where we switch off the
motors. Hence this final stage of landing resembles a
controlled fall. If one switches the drone motors at this low
level, it does not usually impose any danger of breaking
the drone structure. That is because the drone does not fall
from high altitude and because the drone chassis is usually
constructed shockproof enough to withstand exactly such
kind of landing.

4.1 Unexpected Events

It may happen that the target is not identified in the current
video frame. There can be several reasons for that situation
including a noise in the picture causing the blob detection
algorithm to fail and unexpected movement of the drone

Fig 5. A schematic drone position (a side view) and the view from
the bottom camera (top left). Points T, S, C1, C2 are seen as T’, S’,
C’1, C’2.

(user intervention, wind, turbulences etc.). In the default
mode, we simply assume that the target is still at the
original position (although temporarily invisible) and we
move the drone in the direction of the last time seen
position of the target. However, if the target is not
identified in ten consecutive video frames, we interrupt the
landing procedure and switch the drone to the hovering
mode to prevent unwanted movement. This approach
recovers easily from mistakes in the pattern recognition
procedure and ensures that the drone moves continuously.
For the second situation when the drone moves
inappropriately to the intentions, we can optionally use a
more proactive approach. Based on data from the
accelerometer, we can detect the drone movement
difference (measure passed distance by the accelerometer,
this is also called accelerometer based odometry). We can
compute the distance from the last known position of the
target by summing all the acceleration values for each axis
since the target got lost and adding this summations to the
appropriate last known target position abscissa. By this
information we have computed the estimated location of
the target even if this location is outside the visibility area
of the bottom camera. If such situation happens, we move
the drone towards the expected location. However, if the
target does not appear in the camera view according to the
estimated location where it should already be visible, we
interrupt this mode and switch the drone to the hovering
mode to prevent unwanted moves like in the first case. The
accelerometer can be used to balance sudden changes of
drone location, but due to its nature, it cannot provide
accurate measurements for a long time and hence it is used
just as a short-term correction facility.

4.2 PID controller

A PID controller (see Figure 6) is a control loop feedback
mechanism with specifically defined transfer function – a
function that processes the input values to the output
values in every cycle of the loop while aiming for
minimizing the error. In our case the input is the computed
error (distance/angle in meters/degrees, see the Section 3)
and the output is a control value for the drone low-level
controller. A point where the error of the system is
minimal is called a setpoint and represents the target the
controller wants to reach (and also the input value for the
controller). The transfer function is divided to three parts –
the so called proportional, integrative and derivative parts.
Input of each part is the same as the input of the whole
transfer function and the output of the transfer function is
the sum of outputs of the three individual parts. It should
also be noted that the input and output values do not
necessarily have to have the same units; for example, in
our case the input is the error of the current control system
value but the output is the requested pitch, roll, yaw, and
vertical speed as explained earlier in this section.
The output of the proportional part is directly dependent
on its input multiplied by the constant P (proportional
gain). We can see that this output value will always move
the system in a direction towards the setpoint. The power
of this movement depends on the value of the error and on
the value of the constant P. When using this part on
systems which are affected by inertia forces, there is a

danger of reaching the setpoint but due to these inertia
forces overshooting and departing it again, then stopping,
returning and so on. That can lead in a long term to
oscillation around the setpoint.
The output of the integrative part is the sum of all errors
since the start multiplied by the constant I (reset). We can
see that the magnitude of the output of this part grows over
time if the error is not zero. This is useful for example in
situations when the system can’t reach the setpoint
because of external impact. When the error does not
minimize over time, the power of the movement generated
by this part increases and consecutively can rise high
enough to overcome the blocking forces.
The output of the derivative part is the magnitude of the
error change (current cycle error value compared to the
previous cycle error value) multiplied by the constant D
(rate). The power of this movement depends on the speed
of the system towards the setpoint (“velocity made good”)
and on the value of the constant D. Obviously using the
output value of this part we can determine that the system
is approaching the setpoint too quickly. In such case, we
can start to slow down, which may prevent the unwanted
oscillation around the setpoint as mentioned above. For
example when the drone is near the target, but it still has
high velocity, the result of the proportional part will be
near the zero, but the result of the derivative part will be a
higher value. The sum of these two values will be sent to
the drone and will cause the breaking movement.
The outputs of the controllers are values saying how much
percent of the maximum allowed tilt/vertical speed/angular
speed the drone should execute. Simplified pseudo code of
the PID algorithm is as follows:
do forever:

read(current_position);
current_error = setpoint – current_position;
sum_error = sum_error + current_error;
output = P*current_error + I*sum_error +

D*(current_error – last_error);
last_error = current_error;

When the constants P, I, and D are set correctly and
therefore each part has appropriate impact to controller
output, the PID controller moves the drone towards the
setpoint flawlessly and quickly without unnecessary
movements and oscillations and stops and stays over it
even when the flying conditions are not perfect.
In high abstraction we can imagine a use of the PID
controller as an impact of a conjunction of three forces to
the drone – each with unique characteristic. The first force
tends to move the drone always directly to the target, the
second force helps to reach the target when the difference
between the position and the target is small and the third
force slows down the drone as it approaches the target.

Fig 6. PID controller.

4.3 Improving the controller

The outputs from the PID controllers may be
post-processed before sending them to the drone. In our
code, we have used for example the following
improvements which do not change the overall operation
but which fine-tune the flight:

yaw_out = 10 * yaw / max(horiz_dist, 0.1);

This makes the angular rotation speed dependent on the
horizontal distance from the target. If the horizontal
distance is higher than 0.1 meters, the angular rotation
speed is decreased proportionally. Using this modification
decreases the probability of losing the target while making
risky moves such as rotation in situations when the target
is near the middle of camera view. Another refinement
concerns the vertical (altitude) speed:
alt_speed_out = 5 * alt_speed / max(angle, 5);

This decreases the altitude speed when the difference from
the angle we want to reach is bigger than 5 degrees. This
formula leads to slowdown of the drone so that the drone
has more time to rotate and reach the required angle.
These optimizations are used to enhance the stability and
reliability of the landing procedure.
When the target is not recognized successfully, several
problems may arise. When a wrong place is recognized as
a target or the target is not where it was supposed to be
(e.g. while rediscovering the target after inaccurate
estimation), this target position change is fed to the
controller. Since this wrong position might be far away
from the last recognized position, the target shift can be
interpreted by the controller as a jump. Even if this jump is
not real, output of the derivative part of the controller will
be high (because of the big change of the target position).
Consecutively, the overall output of the controller would
be very high which would result in rapid move of the
drone. Such movements may be very dangerous for the
system stability as such and transitively also for the chance
of successful landing. This problem can be eliminated by
setting a threshold for the maximum target position change
speed (for example by limiting the maximum allowed
value of the derivative part and/or by limiting the
maximum allowed distance of two successive target
positions) and therefore restricting the impact of the
controller to the drone in such moments.

Secondly, the distance of the drone from the target is
computed using data acquired from the sensors. Since the
sensors are real-world sensors and not precise theoretical
model sensors, their output is noisy (and may be in
principle noisy with different deviations in every
measurement). These deviations may produce incorrect
error values used as inputs for the control loop, which may
then result in dangerous jerky movements of the drone.
This problem can be often eliminated by very simple
filtering of the sensor data, for example by using floating
average over a small number of consecutive measurements
or using a Kalman filter if the characteristics of the
variance of a measured values are known.

5 USER INTERACTION
For controlling the drone, we use the ControlTower
application [3] that we extended by a new module named
DroneLander. This module is invoked from ControlTower
and provides its own user interface for defining the
landing pattern and for basic control of the drone (buttons
on the very left of Figure 7).
DroneLander uses the bottom camera of AR.Drone as the
major information source for landing. The user can freeze
a camera picture and set the HSV (hue, saturation, and
value/brightness) parameters to identify two color blobs in
the picture (left and center panels at Figure 7). Anytime
when the software recognizes these two blobs in the video
stream, it displays a red circle between them that marks
the landing point (see the right most panel in Figure 7).
The user can also optionally select the horizontal landing
angle (yaw) of the drone marked by an arrow with respect
to these two blobs (if not activated then the drone simply
lands with any orientation).
The flight of a drone can be controlled manually through
the keyboard or a game controller via the ControlTower
application. When the user (pilot) spots the landing pattern
in the picture from the bottom camera, it is possible to start
the landing process. We provide two options for using the
landing pattern. Either the drone lands onto the pattern
(land on target) or the drone stays steadily directly above
the pattern at the current height and at the required angle
(if activated) (lock on target). The unexpected drone
movements caused by external forces (wind, turbulence,
user interaction etc.) are corrected by the landing software

Fig 7. DroneLander user interface

via the implemented controller. When the landing pattern
disappears from the camera view, the system has a simple
function of trying to find the pattern by going in the
direction where the pattern was lost (estimate target).

6 EXPERIMENTAL RESULTS
We evaluated the proposed autonomous landing software
experimentally by measuring reliability, precision, and
speed of the landing process under different conditions. In
particular, we did two sets of experiments. In one set, there
was no external disturbance of the landing process beyond
the classical environmental conditions in the room. In the
second set, we added a fan at the altitude of 50 cm and
directed it towards the landing area in the distance about
150 cm. The motivation was to see how the drone
controller balances external interference with the landing
process. All experiments were done indoors; we placed the
drone right above the landing area at different altitudes
(50-200 cm) and with different rotation with respect to the
landing pattern (0°, 90°, 180°). For each combination of
parameters, we repeated the landing process until we got
four successful landings. Then we measured the success
rate as 4/#landings. For the successful landings we
measured the time to land (in seconds) and the distance of
the drone (its bottom camera) from the landing point (in
centimeters).
Figure 8 shows the results as a function of the starting
altitude. We differentiate between the initial orientations
and having the fan switched on and off. The results
confirm the expected behavior. Time to land increases
with the increased altitude and with the increased initial
rotation, as the drone needs to do more operations to land.
When the fan is on (marked as fan in the figure), the
landing time is also longer, which is expected. Adding
wind also decreases significantly the success rate and the
precision of landing, which is again an expected result.
The reson is that AR.Drone is very light and it is easy to
be blowed away. This is especially critical close to the
landing target as the drone may easily lose the target from
the camera view.
In summary, under the normal conditions, the drone is
landing reliably and with good precision. Under the windy

conditions, that are however not expected indoors, the
success of landing decreases significantly. Using heavier
drones would probably make it easier to resist wind.

7 CONCLUSIONS
Autonomous landing is one of the key operations of
autonomous flying drones. It is especially important to use
a flexible approach that does not require expensive ground
equipment. In this paper we described a mechanism for
fully autonomous landing of AR.Drone that uses a simple
and easy-to-made graphical pattern to identify the landing
area. We use only the existing sensors in AR.Drone
including the bottom camera. The preliminary
experimental results showed that the landing procedure is
reliable under normal conditions.

REFERENCES
[1] R. Barták, A. Hraško, D. Obdržálek, On Autonomous

Landing of AR.Drone: Hands-on Experience. In
Proceedings of FLAIRS 2014, AAAI Press, 2014.

[2] R. Brunelli, Template Matching Techniques in Computer
Vision: Theory and Practice, Wiley, 2009.

[3] ControlTower. Accessed March 10, 2014.
https://code.google.com/p/javadrone/wiki/ControlTower.

[4] M. King. Process Control: A Practical Approach.
Chichester, UK: John Wiley & Sons Ltd., 2010.

[5] S. Lange, N. Sünderhauf, P. Protzel, A Vision Based
Onboard Approach for Landing and Position Control of an
Autonomous Multirotor UAV in GPS-Denied
Environments. International Conference on Advanced
Robotics, pp. 1-6, 2009.

[6] OpenCV. Accessed March 10, 2014.
http://opencv.org/.

[7] Parrot Inc., AR.Drone 2.0. Accessed March 10, 2014.
http://ardrone2.parrot.com/.

[8] S. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach. Third Edition. Prentice Hall, 2010.

[9] R. Szeliski. Computer Vision: Algorithms and Applications.
Springer Verlag, 2010.

[10] S. Yang, S.A. Scherer, A. Zell, An Onboard Monocular
Vision System for Autonomous Takeoff, Hovering and
Landing of a Micro Aerial Vehicle. Journal of Intelligent &
Robotic Systems, Volume 69, Issue 1-4, pp. 499-515, 2013.

Fig 8. Dependence of landing time (left), precision (middle), and reliability (right) on the initial altitude (50, 100, 150, 200 cm) and orientation
relatively to the target (0°, 90°, 180°).

