X-Copter Studio

Michal Koutny Ondrej Pilat

Patrik Cerny Maro$§ Kasinec

Faculty of Mathematics and Faculty of Mathematics and Faculty of Mathematics and Faculty of Mathematics and

Physics
Charles University
Prague, Czech republic

Physics
Charles University
Prague, Czech republic

Abstract—We present a project that aggregates various exist-
ing robotic software and serves as a platform to conveniently con-
trol a quadrocopter, mainly for research or educational purposes.
User interface runs in a browser and other components are also
made with portability in mind. We provide a common interface
that unifies different quadrocopter models and we implemented
it for Parrot AR.Drone 2.0. The platform is data oriented, i.e. it
is based on dataflow between user objects. We implemented
several such objects for: data recording and replaying, inertial
and visual localization and following a given path.

I. MOTIVATION

Despite the fact that cheap hardware (such as Par-
rot AR.Drone 2.0 [1] or ready kits [2]) is available, there are
not many possibilities for application programmers to develop
software for these robots without need to distinguish between
individual models.

Our aim is to provide a platform for development of soft-
ware for quadrocopters. The target users are Al programmers
or students and expected tasks are general algorithms (basic
example in figure 1) for quadrocopters. The result should work
with any robot compatible with our software (section IV-C).
The testing should be further simplified by running the applica-
tion without physical access to a quadrocopter either by using
a simulator or data previously captured during live flights.

at (xcheckpoint.reachedCheckpoint) {
xcheckpoint.checkpoint =
nextCheckpoint () ;
Yo

// x =3m, y=1m z=1.5m
var cp0 = Checkpoint.new(3, 1, 1.5);
xcheckpoint.checkpoint = cp0;

Fig. 1. Sample script that flies through computed checkpoints. It assumes
there is created a dataflow graph with node xcheckpoint in it.

II. RELATED WORK
A. Middleware for robotics

Probably most popular middleware for robotics is the Robot
Operating System (ROS) [3]. It implements communication
between objects using publish—subscribe mechanism. It is open
source, mainly targeted on Linux platforms.

Similar project is Urbi SDK, developed by former private
company Gostai [4]. The current maintainer is Aldebaran

Physics
Charles University
Prague, Czech republic

Physics
Charles University
Prague, Czech republic

Robotics [5], unfortunately the community around Urbi SDK
is much smaller and much less active in comparison with ROS.
Reasons why we chose Urbi SDK despite this fact are in the
section III-B.

B. Parrot AR.Drone 2 API

Part of our project is an API for Parrot AR.Drone 2.
Various other projects are dealing with this. There is the
official SDK [6] with C++ API, ControlTower [7] that provide
Java interface, a ROS package ardrone_autonomy [8], UObject
for Urbi SDK [9] or implementation of Czech Technical
University [10].

Because none of the aforementioned fit to our requirements
for OS portability, stability, functionality or documentation, we
implemented our own (see the section IV-C).

C. Ground control system

There is official application for Parrot AR.Drone [11]
intended for mobile phone users allowing manual control and
displaying only limited data from sensors. The PC application
ControlTower [7] allows controlling quadrocopter with spe-
cialized computer peripheries and has airplane-like GUI. More
complex application is QGroundControl [12] that cooperates
with Pixhawk project [13] that encompasses own hardware and
uses visual localization.

III. USED TECHNOLOGY
A. Architecture

Our system is divided into three components. First interacts
directly with a user, second controls the robot and the last one
connects the former two.

The components are separate processes that communicate
with each other over network, with intention to run components
on different machines.

1) Client: Client software is used to create and launch user
scripts, edit them, manually control the robot and visualize data
(e.g. directly from quadrocopter’s sensors).

Despite the technology challenges the client is thin — run-
ning in a web browser.!

'Google Chrome is strongly recommended, though Mozilla Firefox will
also get by (without visualization of video data).

2) Server: The server component conveys communication
between the client and the actual control machine (further
onboard). Its task is to control the access to the onboard and
monitor quality of the connection between the client and the
onboard. In the case the overall connection latency (Client—
Server and Server—Onboard) exceeds preset limits, a warning
message is shown to the user. If the connection is lost, onboard
execution is correctly terminated and user is notified too.

3) Onboard: The onboard is the main executive compo-
nent. The robot control and data processing run here because
it is closest to the robot. The onboard is executing commands
obtained from the client and sends back various data selected
by user.

The onboard component is supposed to run under normal
operating system.> Our implementation exploits a PC that
communicates with quadrocopter via Wi-Fi. We did not test
the onboard component directly on a robot.?

B. Urbi SDK

Urbi SDK is a C++ middleware for robotics, which we
based the onboard component on. Basically it provides support
for communication between user objects (UObjects) and
schedules user jobs.

Communication is possible via so called UVars, which
are slots of UObjects. Sender just writes to these slots and
a receiver’s callback handles the change of Uvar’s value.
This allows both apparently asynchronous communication and
really asynchronous when a thread pool is used to run the
callbacks. Further, UObjects can run in different processes
and Urbi SDK ensures transparent messaging via TCP or UDP
sockets.

Orchestration user scripts (written in Urbiscript) can be
executed by the Urbi runtime. Urbiscript is a prototype-based
object-oriented language conceptually similar to JavaScript.
It is possible to implement UOb ject functionality exclusively
in the Urbiscript.

We chose Urbi SDK because of its portability (Linux
and Windows systems are supported) and the own scripting
language and runtime. Considered alternative was Robot Op-
erating System.

C. NodelS

NodeJS is a server-side JavaScript engine. Recently, it
became quite popular among developers of interactive web
applications and various modules [14] exists that extends core
functionality. It suited our needs for the server component.

D. HTML5

Thanks to the standardization efforts many features that
were earlier common only for desktop applications or via third
party plug-ins (Flash, Java applets, native plug-ins) are now
implemented directly in the browser, generally referred to as
HTMLS.

2We support Windows 7/8 and Ubuntu 14.04 systems.
3The hardware of Parrot AR Drone 2.0 theoretically should be able to run
our onboard with limited performance.

To make client as multi-platform as possible, we decided
to implement the client for the browser using aforementioned
HTMLS technologies. Most importantly, we use the web
socket API [15] for sending data back to the client and
<video> tag to display streamed video.

E. C++

The executive parts of the onboard component are written
in C++ (which is consequence of using Urbi SDK). We utilize
features of the C++11 standard, mainly for threading and
memory management.

IV. FEATURES
A. Dataflow graph

We chose dataflow driven approach to describe the user’s
program. It consists of units of operation which we call nodes.
Each node has at least one input or at least one output. Any
operations are either results of changes on node’s inputs or
are launched by an external event hidden in a node (e.g. timer
expiration, a socket received data).

Urbi SDK itself encourages dataflow control by its com-
munication paradigm. We extended the original mechanism
to ensure syntactic and semantic compatibility between nodes.

Dataflow bears following advantages for the end user:

1) Implicit parallelism: Nodes are implicit synchronized on
outputs-inputs connections, thus avoiding excessive user effort.
This also ensures certain level of scalability on multiple CPUs
machines.

2) Separating abstraction levels: User can concentrate on
high level objectives only, implementation details are hidden
in particular nodes. On the other hand, a creator of a node
is limited by particular node’s interface.

3) Visual development: Each node defines an interface,
which makes it possible to check what connections are possible
(not only syntactically but also semantically with flat system of
semantic types). In the end, user can assemble various dataflow
graphs interactively (figure 2).

4) In-time data inspection: Selected outputs of the nodes
can be connected with a special node that resends the data
to the GUI where the data are visualized on the fly (figure 2).

B. Scripting

Only the dataflow graph of nodes is not enough for
controlling the quadrocopter. Thus, a user can write scripts
that are sent and executed on onboard. In such scripts it’s
possible to handle events occurring within the dataflow graph
or manually affect the dataflow. The script execution can be
paused and resumed (that is a feature of Urbiscript, for instance
useful for intentionally infinite loops).

C. Quadrocopters unified APl

The X-Copter Studio supplies a unified application pro-
gramming interface (denoted as XCI) for data acquisition and
control of quadrocopters. It is ready for common sensors
on quadrocopters and it can be easily extended.

[X-Copter Studio

& & [localhosl

XCS | Settings

Dataplayer? video

DFG nodes [15]
Checkpointhovement

execContal p—
execOflsoript— :
command code

fiyControl

Control

Datalogger

Dataplayer

Executor

Fiyconuol

FiyControlAggregator
FiyControlMultiplexer

Localization

Destoy DFG [IESERLTES = || st | sop | py| Clear

S Reloadnodes | creaioFe Stant Flow

Fig. 2.

internalTimeimu "
intemaiTimevidea

ol =
QAQwl =
e
Dataplayer? eki_velacity Dataplayer2 flyControl
z0
y: -0.0102568
x: 0.00315379
DataplayerZ ekf_position
z0
¥:-0.000211828
x: 00000857217
Dataplayer? altitude
20
a3
o
X -

X-Copter Studio GUI. Top navbar indicated connection quality, upper half is filled with widgets that display data from the onboard, lower half

accommodates the editor with repository of nodes on the left, and connected nodes on the right. At the bottom there are (left to right): dataflow control buttons,
scripting console control buttons and manual flight control buttons. The scripting console is hidden.

Input Console * ~

1 while(localization.ptamStatus != 3 && localization.ptamStatus != 4){
2 echo("lnicialize"g;

3 localization.control = "init";

4 //control.desireVelocity = upSpeed;

3 sLeeg(ZsD;
5 localization.control = "init";
7 echo{"Inicialize -- 2nd KF");
& sleep(2s);

3 //control desirevelocity = downSpeed;
10 sleep(4s);

1 }:

Outpu

Inicialize
Inicialize -- 2nd KF
Inicialize
Inicialize -- 2nd KF

¥ Console

L o

¥ DFG = Reload nodes Create DFG Start Flow

= | Pause Stop [EEEIF) Clear

Fig. 3. Urbiscript console. On the top — script editor, middle — output of
executed script, bottom left — script execution control (surrounded with other
controls of X-Copter Studio).

We implemented the XCI for one of the most popular
quadrocopters — Parrot AR.Drone 2.0 and also a simulated
quadrocopter in the V-REP simulator [16].

Our Parrot implementation exploits asynchronous socket
events handling, which allows us to detect connection failures

and attempt to restore the connection with the quadrocopter.
The implementation further supports full configuration of the
Parrot AR.Drone 2.0 and reading data from all available
Sensors.

1) Hardware platform: We use Parrot for its price, ro-
bustness and popularity among research groups. The cost for
this is extensibility — neither the hardware nor the software
on Parrot can be expanded. We have to deal with unreliable
communication over Wi-Fi and connection failures.

Physical dimensions of the AR.Drone 2 with the hull are
53 cm x 52 cm and it weights 420 g including battery. It can fly
for about 15 minutes with the more powerful battery version
(1500 mAh).

a) Sensors: The AR.Drone 2 provides a video stream
in high definition (720p) with 30FPS from front camera
aimed forward or QVGA stream with 60 FPS from bottom
camera aimed to the ground, three-axes gyroscope, three-axes
accelerometer, three-axes magnetometer, pressure sensor and
ultrasound altimeter. The quadrocopter sends raw and adjusted
measurement from gyroscope, accelerometer, ultrasound sen-
sor and pressure sensor with frequency of 200 Hz. All data
from these sensors are accessible for user in the dataflow.

b) Control: Quadrocopter firmware uses aforemen-
tioned sensors to maintain tilt, rotation and vertical velocity of
the quadrocopter according to an external fly control command.
This control command u = (®,0,V,) € [~1,1]* consists

hleadiné >
25 path ——
5 bippg L,
1.5 \% £
o)

I/
(
0.5 \

X [m]

Fig. 4.

headin é =
path ——

-05 0 05 1 15 2 25

X [m]

Example of a path tracked by the EKF. A square 2m X 2m was set up and quadrocopter was navigated (with PID controller) to its vertices using

inertial localization only. Supposed position is shown on the left plot. As you can see, plot on the right shows more realistic pose and position thanks to visual
localization (applied to the original data). Alas, we don’t have any reference data for absolute comparison.

of quadrocopter’s roll ®, pitch ©, yaw rotation speed ¥ and
vertical velocity 2. It should be sent every 30 ms for smooth
movements.

D. Data recording and replaying

Thanks to the structured dataflow architecture, any poten-
tially interesting data can be captured and stored in a file.
We use text format which is portable and allows convenient
processing with data processing tools. Data that are inherently
binary aren’t supported, however, special case — image data
are stored with compression to a separate video file.

Recorded data are stored together with timestamps, so it’s
possible to “replay” them and test or debug system’s response
with real timing.

E. Localization in unknown environment

We use quadrocopter’s onboard sensors to give the end
user information about the absolute position of the aircraft.
The localization is a node within the dataflow graph, thus it
runs exclusively on the onboard component.

1) Inertial localization: Our implementation expects ac-
celerometers with aggregated outputs in a form of horizontal
velocity, altimeter and drone pose sensors (i.e. accelerometers
for roll and pitch angles and gyroscope and/or magnetometer
for yaw angle). Sensor data are filtered with extended Kalman
filter (EKF) where we engage physical model based on a sim-
ilar project [17].

2) Visual localization: To enhance absolute position esti-
mate, we are processing the video stream from the onboard
camera. We use monocular SLAM framework PTAM [18]
that estimates camera pose and position for each frame and
also builds a map of observed feature points. First, the map

is initialized from a pair of images where point correspondence
is based on optical flow and the initial scale is estimated
thanks to inertial localization. After the initialization, the
scale estimate is continuously refined using method described
in [17].

Data both from inertial and visual localization are merged
together in the extended Kalman filter (see figure 4) in separate
update steps. The result from PTAM (absolute position and
quadrocopter’s pose) is used to update the EKF, taking into
account a delay of visual localization and then recalculating
prediction of the current state.

F. Following given path

Path is represented as a list of checkpoints that drone
strictly follows. A checkpoint is a composite of world coordi-
nates and a tangential vector.*

Checkpoint attainment: Quadrocopter achieves a check-
point when it is in a sphere around the checkpoint with
10 cm diameter (according to the localization) and immediately
continues to the next checkpoint in the queue. Flight to the
checkpoint is controlled by 200 Hz PID regulator.’ Regulator
uses data from the extended Kalman filter in order to eliminate
data delay and predict quadrocopter’s current position in
the world. Output from the regulator is sent directly to the
quadrocopter.

G. Runtime configuration

Any configuration (parameters, calibration constants, set-
tings, etc.) is stored in human readable and editable text files

4This vector specifies direction of quadrocopter’s heading at the given
checkpoint. This is intended to be used when checkpoints should be followed
as a spline curve.

5The frequency is induced by the dataflow, in this case it is refresh frequency
of data from quadrocopter.

and loaded during runtime, thus avoiding necessity of recom-
pilation to apply changes.

The same configuration can be accessed both from C++
and Urbiscript APL

V. CONCLUSION

We hope the X-Copter Studio will became used (at least)
for educational purposes since it provides sufficiently high-
level interface, for instance to prototype planning algorithms.

If it is proved as useful and practical, it is possible to extend
the software for other types of robots, not only quadrocopters.

REFERENCES

[11 “AR.Drone 2.0. Parrot new wi-fi quadricopter,” 2014. [Online]: http:/
ardrone2.parrot.com/

[2] “The Crazyflie Nano Quadcopter,” 2014. [Online]: http://www.bitcraze.
se/crazyflie/

[3] “ROS.org,” 2014. [Online]: http://www.ros.org/

[4] “Urbi,” 2014. [Online]: http://www.gostai.com/products/jazz/urbi/index.
html

[S] “aldebaran/urbi,” 2014. [Online]: https://github.com/aldebaran/urbi

[6] “ARDRONE open API platform,” 2014. [Online]: https://projects.
ardrone.org/

[7] “javadrone — AR.Drone Java API — Google Project Hosting,” 2014.
[Online]: https://code.google.com/p/javadrone/

[8] “ardrone_autonomy — ROS Wiki,” 2014. [Online]: http://wiki.ros.org/
ardrone_autonomy

[9] “UrbiForge projects/Urbi 4 AR Drone,” 2014. [Online]: http://www.
urbiforge.org/index.php/Projects/Urbi4 ARDrone

[10] Tomas Krajnik and Vojtéch Vondsek and Daniel FiSer and Jan Faigl,
“AR-Drone as a Platform for Robotic Research and Education,” in
Research and Education in Robotics: EUROBOT 2011, 2011.

[11] “AR.Freeflight,” 2014. [Online]: http://ardrone2.parrot.com/#freeflight

[12] “QGroundControl GCS,” 2014. [Online]: http://www.qgroundcontrol.
org/

[13] Meier, Lorenz and Tanskanen, Petri and Heng, Lionel and Lee, Gim Hee
and Fraundorfer, Friedrich and Pollefeys, Marc, “PIXHAWK: A micro
aerial vehicle design for autonomous flight using onboard computer
vision,” in Autonomous Robots (AURO), 2012.

[14] “Node Packaged Modules,” 2014. [Online]: https://www.npmjs.org/

[15] “RFC 6455 — The WebSocket Protocol,” 2014. [Online]: http://tools.
ietf.org/html/rfc6455/

[16] “Coppelia Robotics v-rep: Create. Compose. Simulate. Any Robot,”
2014. [Online]: http://www.coppeliarobotics.com/

[17] J. Engel, J. Sturm and D. Cremers, “Camera-Based Navigation of
a Low-Cost Quadrocopter,” in Proc. of the International Conference on
Intelligent Robot Systems (IROS), 2012.

[18] G. Klein and D. Murray, “Parallel tracking and mapping for small AR
workspaces,” in Proc. IEEE Intl. Symposium on Mixed and Augmented
Reality (ISMAR), 2007.

