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Czech Technical University in Prague CTU

Artificial Intelligence Center and Computational Robotics v

IN FRAGUE

Established in 18 January, 1707
Foundation deed signed by Emperor Joseph |

= About 21 000 students enrolled and 1 9000
academic employees — 8 faculties

m Faculty of Electrical Engineering (FEE)
Department of Computer Science

= First CS department in Czechia established in 1964
http://cs.felk.cvut.cz
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m Artificial Intelligence Center (AlIC)

= Research in Al for more than 20 years htip://aic.fel.cvut.cz

s Computational Robotics Laboratory (ComRob)
https://comrob.fel.cvut.cz — established in 2013

= Focused on robotic information gathering — a problem to create
a model of phenomena by autonomous mobile robots perform-
Ing measurements in dynamic unknown environment.

® Mostly aerial and ground (multi-legged) robotic vehicles
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Information Gathering with Unmanned Aerial Vehicles €Ty
(UAVs) — UAV Mapping and Surveillance Missions e

UNIVERSITY
IN FRAGUE

i = = B L
earch, pick and place

= Surveillance planning in Mohamed Bin Zayed Internation
(MBZIRC) 2017
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Data Collection Planning for Surveillance Missions with @ €Ty

= Provide curvature-constrained path to collect the most valuable mea-
surements with shortest possible path/time or under limited travel budget

® Can be formulated as routing problems with Dubins vehicle

® Dubins Traveling Salesman Problem with Neighborhoods
® Dubins Orienteering Problem with Neighborhoods
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Planning Curvature-Constrained Multi-Goal Path @}

Dubins Vehicle for Fixed-Wing and Multi-Rotor Vehicles

® Sharp turns can lead to high error of visiting
the requested goals

® Planned paths should support precise tra-
jectory following by the used controller

[ ® Dubins vehicle can be used for curvature-
W b oy constrained paths

=—PManned Dubvins pih
I 1

= Minimal tulrlning radius p and constant for- 5
ward velocity v with the state g = (x,y, ), N e )
gc SE(2), (x,y)cR2and d c S’

= Optimal path connecting g;.9, € SE(2)
can be found analytically

= Two types of maneuvers: CSC and CCC

(Dubins, 1957)

The main difficulty is to determine the vehicle headings for a
given set/sequence of waypoints /\
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Dubins Traveling Salesman Problem (DTSP)

= Having a set of locations to be visited, the problem is to determine a
closed shortest Dubins path visiting each location p; € P of the given
set of nlocations P = {py,....pn}, pi € R?

1. Permutation ¥ = (o4, ...,0,) of visits T e :
Sequencing part of the problem — combinatorial optimization R ” 3
2. Headings © = {6,,,0,,,...,0,, } forp, € P :
Continuous optimization A = s 4
m DTSP is an optimization problem over all possible permutations % °
and headings © in the states (g,,,9s., .- .,q-,) such that q,, = (ps,, 05,)
n—1
minimizes.e > £(Go,,9o,.,) + £(90,, Go,) (1)
i=1
subject to gi=(pPrb;) | = 1w 0, (2)

where £(q,,, q-;) is the length of Dubins path between q,, and q,. /\i
CENTER
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Survelillance Missions with Non-Zero Sensing Radius

B Exploltlng non-zero sensing range ¢ to shorten the requested multi-goal path

s Dubins Travellng Salesman Problem mth Nelghborhoods (DTSPN)

— determine the sequence of visits 2, headings ©, but also the waypoint
locations within the respective neighborhoods P = {p+,...,ps}, pi € H%?Ai
CENTER
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Existing Approaches to the DTSP(N) @} cTu

Heuristics, Resolution Complete, and Sampling-based

= Sampling-based approaches = Heuristic approaches

B Obermeyer, 2009 B Savia et al., 2005
m Oberlinetal., 2010 Ma and Castanon, 2006
m Macharet et al., 2016 Macharet et al., 2011

= Convex optimization Macharet et al., 2012

Ny etal., 2012
B (Only if the locations are far enough) Yf and Hang, 2012
m Goacetal, 2013 ’

Macharet et al., 2013
= Lower-bound for the DTSP

Zhant et al., 2014
= Using Dubins Interval Problem (DIP) Macharet and Campost, 2014
s Manyam et al., 2016

Vana and Faigl, 2015
= |Lower-bound for the DTSPN

[saiah and Shima, 2015
= Using Generalized DIP (GDIP)
m Vana and Faigl, 2018
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Theoretical Guarantees — Lower-Bound using solution of

Dubins Interval Problem (DIP)

= Determine the shortest Dubins maneuver connecting p; and p; given the
angle intervals 6; € [0/™", 67| and ¢; € [0/, 6%

= DIP has closed-form solution
Manyam, Rathinam, and Casbeer, 2016

max ;
31'. Q?ttn

yer
RSR manet Pi N\,

TIin
9;?

= For the intervals ©;, = ©; = [0,27), the solution is the length of the
straight line segment

= |t provides lower-bound of the length of the shortest Dubins maneuver

connecting p; and p; .
/N\I
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Sampling-based Solution of the DTSP with a Given

Sequence of Visits > — Dubins Touring Problem (DTP)

m For a sequence of the waypoint locations

P:(Ph---,pn)

E.g., found as a solution of the Euclidean TSP

= We can sample possible heading values at
each location / into a discrete set of kK head-
ings, i.e., hi = {6!,...,0%} and create a graph
of all possible Dubins maneuvers

The first layer is duﬂﬁﬂfﬂj E}-fer to support ﬁE i"En_vard search method B FO r a set Gf h e ad | ng sam-
o h 5 & ples, the optimal solution can be
! 2 3 n I
—~ N N g found by a forward search of the
9 I 9 3 B I 9 ) - 3
N N graph in O(nk*) |
9 % g % p2| ® The key is to determined the

most suitable heading sam-
ples per each waypoint

eéf.; egi%ﬁﬁ
4 N N i
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Sampling-based Solution of the DTSP with a Given

Sequence of Visits > — Dubins Touring Problem (DTP)

m For a sequence of the waypoint locations

P:(Ph---,pn)

E.g., found as a solution of the Euclidean TSP

= We can sample possible heading values at
each location / into a discrete set of kK head-
ings, i.e., hi = {6!,...,0%} and create a graph
of all possible Dubins maneuvers

The first layer is duplicated layer to support the forward search method B Far a set Gf h e ad | ng sam-

— s SR

H H 2, 2} I ples, the optimal solution can be

r,,.,@—g (,,5; ,ﬁﬁ f"@_:“ ! found by a forward search of the
f 2 : : graph in O(nk?®)

Ch

7{.;;5 m The key is to determined the
o

]

b

most suitable heading sam-
ples per each waypoint

® The lower bound can be found
using DIP /\

i
CENTER
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Sampling-based Solution of the DTSP (as the DTP)

EIECH TECHMICAL

Uniform vs Informed Sampling of the Headings s

Uniform sampling Lower Bound Solution Informed sampling

H, 1
N = 224, T¢py = 128 ms Lower bound £ based on N =128, T¢cpy = 76 ms
L= 198,.Li{i="138, the Dubins Interval Problem =144, Ei= 14.2,

® N —the total number of samples (up to 32 samples per waypoint)
5 L is the length of the tour (blue) and Ly is the lower bound (red) determined as

a solution of the Dubins Interval Problem (DIP) /\,
CENTE!
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m  Faigl et al.: On solution of the Dubins touring problem. ECMR 2017.



Solution of the DTSP with Given Sequence of Visits

Uniform vs Informed Sampling

= Refinement iteration 1, the angular resolution 27 /4
Uniform sampling Informed sampling

e =2m/4, N = 28, Tcpy= 8 ms e=2n/4, N =21, Tcpy= 8 ms /\I
E£E=2719,Li=132 £ =299, E.u—132
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Solution of the DTSP with Given Sequence of Visits @}

Uniform vs Informed Sampling

= Refinement iteration 1, the angular resolution 27 /8
Uniform sampling Informed sampling

e =2m/8, N = 56, Tcpy= 16 ms E_zw/s N = 28, Tcpy= 20 ms /\I
£ =208, Ly=132 £=91.0, Lij= 13.2
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Solution of the DTSP with Given Sequence of Visits @

Uniform vs Informed Sampling

= Refinement iteration 1, the angular resolution 27 /16
Uniform sampling Informed sampling

e =2r/16, N = 112, Tgpy= 40 ms e =2mw/16, N = 35, Tgpy= 24 ms/\l
£=203,Ly=135 £ =201,Ly =135
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Solution of the DTSP with Given Sequence of Visits @

Uniform vs Informed Sampling

= Refinement iteration 1, the angular resolution 27 /32
Uniform sampling Informed sampling

e = 211/32, N = 224, Tgpy= 140 ms e = 211/32, N = 44, Topy= 32 ms /\I
£ =198, Ly =138 £ =199, Ly =138
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Solution of the DTSP with Given Sequence of Visits @

Uniform vs Informed Sampling

= Refinement iteration 1, the angular resolution 27 /64
Uniform sampling Informed sampling

e =2 /64, N = 448, Topy= 456 ms e =2m/64, N = 51, Tgpy= 48 ms Ai
E="145,L5=145 £.=19.9 L= 139 CENTER
Jan Faigl — Surveillance Planning with UAVs CACRE 2018, Chengdu, China 12/ 34



CTU

CIRCH TECHM I CAL
UNIVERSITY
IN FRAGUE

Solution of the DTSP with Given Sequence of Visits w

Uniform vs Informed Sampling

= Refinement iteration 1, the angular resolution 27 /128
Uniform sampling Informed sampling

e = 2m/128, N = 896, Tcpy= 1620 ms e =2m/128, N = 70, Tepy= 60 msAI
L£L—=145, £y = 14.5 £.=14.8 Cijj= 14.1
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Solution of the DTSP with Given Sequence of Visits /ﬁ}

Uniform vs Informed Sampling

= Refinement iteration 1, the angular resolution 27 /256
Uniform sampling Informed sampling

2
-'-
o

e = 21/256, N = 1792, Topy= 6784 ms e = 2w /256, N = 100, Tepy= 88 ms/\l
=144, Cij=14.3 £.=14.4, Cij= 143
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DTSP with Lower Bound Guided Sampling o CTU

Comparison with Other Approaches Lo

IN FRAGUE

® Comparison with the Alternating Algorithm (AA), Local Iterative Optimization (LIO),
and Memetic algorithm AA — Savla et al., 2005, LIO — Véiia & Faigl, 2015, Memetic — Zhang et al. 2014

" A sequence of the waypoint locations is determined as the Euclidean TSP (ETSP)
E.g., as in the Alternating Algorithm (AA)

B |n Memetic algorithm, similarly to the sampling-based approaches that solve the
Generalized TSP, the best sequence of visits is determined during the solution

- ETSP + AA
00— ETSP + LIO 1
. ETSP + Proposed Lower bound (10 s)
] ETSP + Proposed (10 s) |
- | Memetic (1 hour) o I
i
N "R [
10 20 50 70 100

Number of targets - n

8

Solution length
5 8

®m  Faigl et al.: On solution of the Dubins touring problem. ECMR 2017.
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Lower Bound for the DTSP with Neighborhoods

Generalized Dubins Interval Problem

= |nthe DTSPN, we need to determined not only the headings, but the
waypoint locations themselves

®= Dubins Interval Problem is not sufficient to provide tight lower-bound

® Generalized Dubins Interval Problem (GDIP) can be utilized for the
DTSPN similarly as the DIP for the DTSP

2
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Generalized Dubins Interval Problem (GDIP) CTu
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= Determine the shortest Dubins maneuver connecting P; and P; given the
angle intervals ¢; € [6;"",0;"*] and ¢; € [6"", 6"

Full problem (GDIP) One-side version (OS-GDIP)

max min
4 61

max min
ﬁl Hl

05  max
9:21:&:1 : 93

® [ransformation from the GDIP to the OS-GDIP:

- P; — {m} — {(030)}

" P} =P2® Py =U{pp— Pa,Pa € P1,ps € P2}
® A closed-form solution can be found for the OS-GDIP
®  Vana and Faigl: Optimal Solution of the Generalized Dubins Interval Problem, RSS 2018. /\i
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Optimal Solution of the GDIP

Closed-form expressions (1-6) Convex optimization (7)
4) CSC type 7) CC,, type

o, 7

Average computational time

Problem Time [us] Ratio

Dubins maneuver 0.58 1.00

DIP 2.86 4.93

GDIP 12.63 21.78
https://github.com/comrob/gdip /\i
CENTER
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GDIP-based Informed Sampling for the DTSPN o CTU
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= |terative refinement of the neighborhood samples and heading samples

Resolution: 4 Gap: 69.3 % Time: 0.079 s

R
s

\
\

(7
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GDIP-based Informed Sampling for the DTSPN o CTU
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= |terative refinement of the neighborhood samples and heading samples

Resolution: 8 Gap: 394 % Time: 0.211 s
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GDIP-based Informed Sampling for the DTSPN o CTU
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= |terative refinement of the neighborhood samples and heading samples

Resolution: 16 Gap: 19.9 % Time: 0.552 s
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GDIP-based Informed Sampling for the DTSPN o CTU
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= |terative refinement of the neighborhood samples and heading samples

Resolution: 32 Gap: 10.7 % Time: 1.292 s
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GDIP-based Informed Sampling for the DTSPN o CTU
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= |terative refinement of the neighborhood samples and heading samples

Resolution: 64 Gap: 53 % Time: 3.183 s
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GDIP-based Informed Sampling for the DTSPN o CTU
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= |terative refinement of the neighborhood samples and heading samples

Resolution: 128 Gap: 2.6 % Time: 8.994 s

Jan Faigl — Surveillance Planning with UAVs CACRE 2018, Chengdu, China 22 / 34



GDIP-based Informed Sampling for the DTSPN o CTU
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= |terative refinement of the neighborhood samples and heading samples

Resolution: 256 Gap: 1.3 % Time: 33.474 s
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DTSPN - Convergence to the Optimal Solution

B [For a given sequence of visits to the target regions (locations)

4.0 — ——— ———r——————r—y 10°
L — Upperbound | _ 10 &
— Lower bound Jos @
% S L0 Y b SERERRE —— Computational time [ """y {10 E
= v i . ----  Approximationk'® |-..-. (R TN 1 10? %
Topl o e . i 1107 S
g 20 e B
TRl i) .. . . ——— 110° ®©
T ] =
x 1.0 1107 E’
OB | B e 11072 S

0.0 | | | | | | | | - oj ] 10'3

1 2 4 8 16 32 64 128 256 512
Maximal resolution kpax

B [he algorithm scales linearly with the number of locations
= Complexity of the algorithm is approximately O(nk'-8)

https://github.com/comrob/gdip

®  VVana and Faigl: Optimal Solution of the Generalized Dubins Interval Problem, RSS 2018.
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Motivation for Surveillance Planning with Multiple UAVs

® Provide curvature-consirained paths for a team of autonomous
unmanned aerial vehicles to verify expected objects of interest

v=25 m.s'*, 80 m x 60 m testing site for experimental verification of our system for the
Mohamed Bin Zayed International Robotics Challenge (MBZIRC)

B Sampling-based methods are relatively slow

B Desired properties of the requested survelllance mission planner
are: fast trajectories and low computational time (< 1s)  /\1
CENTER
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Unsupervised Learning for Surveillance Planning with /w

Team of Aerial Vehicles

B Fast heuristic solution based on unsupervised learning for routing problems
Solutions found in less than 0.6 second for the MBZIRC 2017 scenarios

® Comparison with Memetic algorithm (Zhang et al., 2014) restricted to the maxi-
mal computational time T € {1,5,10,60} seconds and k vehicles

Memetic1s Memetic10s Unsupervised Learning
Lmax [M] Lmax [m] Lmax [m] T [s]

1 586.01(24.22) 376.52(27.17) 363.38 (36.56) 0.55 (0.07)
2 335.83(10.67) 212.18(18.73) 223.76(40.76) 0.53 (0.01)
3  240.67 (6.63) 153.37(12.79) 180.12(29.49) 0.53 (0.03)

1 2

Mumber of vehicles

k

o s0OM

B Memeticis
O Memetc 5s
B Memebc 10 s
B Memetic 60 &

3

®m  Faigl and Vana: Unsupervised learning for surveillance planning with team of aerial vehicles. |[JCNN 2017. Ai
CENTER

Maximal tour length
Q

m  Faigl: GSOA: Growing Self-Organizing Array—Unsupervised Learning for the Close-Enough Traveling Salesman
Problem and Other Routing Problems. Neurocomputing 2018.
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3D Data Collection Planning with Dubins Airplane Model

® Dubins Airplane model describes the
vehicle state g = (p,6,), p € R® and
0, €S as Chitsaz, H., LaValle, S.M. (2017)

= Constant forward velocity v, the mini-
mal turning radius p, and limited pitch

angle: i-e-: ?7!) S [@bmfn: 'Gbmax]

CSC maneuver CCC maneuver

= Parametrization of 3D regions to be
visited

Pi

ICRA 2018.
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m  Vana and Faigl: The Dubins Traveling Salesman Problem with Neighborhoods in the Three-Dimensional Space. /\i
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3D Data Collection Planning with Dubins Airplane Model m

Solutions of the 3D-DTSPN

Algorithm 1: LIO-based Solver for 3D-DTSPN
Data: Regions R

Result: Solution represented by Q and L
1 ¥ + getlnitialSequence(R);

. ‘) i 2 Q < getlnitialSolution(R., ¥):
3 while terminal condition do

i..

4 Q « optimizeHeadings(Q, R.1);
5 Q) « optimizeAlpha(Q. K. L);

6 Q + optimizeBeta(Q. R, L);

7 end

8 return Q. % ;

m  Solutions based on LIO (ETSP+LIO), TSP with the travel cost according to Dubins Airplane Model (DAM-TSP+LIO), and
samphng I::asen:l apprnach with transf::-rmatlc:n c:f the GTSF|I to the ATSP solved by LKH

:L? ol il | il |
B % DAMTSPFLIO & Samplings =
L6 et (3 ETSP 4110 § Sampling16 [ B . x
g I D R ' i Sampling 2 ¥ Sampling 32 | Bl ™ ' .
e HH  Sampling 4 HH Sampling 64 ALl - ;
. - - '. I.

Relative lenght of the solution
l_l
Lad

107 10° 10t 10°
Computational time [s]

®  VVana and Faigl: On the Dubins Traveling Salesman Problem with Neighborhoods. |IROS 2015.

m  /ana et al.: Data collection planning with Dubins airplane model and limited travel budget. ECMR 2017. /\ -
®  Vana and Faigl: The Dubins Traveling Salesman Problem with Neighborhoods in the Three-Dimensional Space. I

ICRA 2018.
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DTSPN with Parametrization of 3D Smooth Trajectory S

Surveillance Planning with Bézier Curves

m Multi-rotor aerial vehicles can generally move in

arbitrary direction
= DTSPN variant for surveillance planning with 3D trajectory

® Find a 3D smooth trajectory visiting a given set of 3D regions
® Minimizes the Travel Time Estimation (TTE)
m Satisfies limited velocity and acceleration of the vehicle

(=1

i

1 :
20 - 3 Naz' N

10 -

z [m]

Hedzental acceleration [m's™]

e B
_j)
31

S— -d:
Heonzental velecity [m

’ I IaliL |
| I | :I.| | | || % b n:I[:-II @ W0 1 1M
0 | | “‘If] 5t | | Time [5]

! S PR —— S L, U
NG Al e SN i

y [I‘l‘l] X [m] 2 M ﬁ_rumﬂa;:- 00 120 140
High altitudes changes saturate vertical velocity AI

®  Faigl and Vana: Surveillance Planning With Bézier Curves. |EEE Robotics and Automation Letters 2018.
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Unsupervised Learning using Bezier Curves
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Epoch 63

s Benefits of Bézier curves

= Flexible and easy to use | ——_
® Start/end direction is given by 0 *
the first/last two control points

']

Example of a cubic Bézier curve § P

X(7) =Bo(1 —7)° +3By7(1 — 7)2 + 3Bo72(1 — 7) + B37°

®m  Faigl and Vana: Surveillance Planning With Bézier Curves. IEEE Robotics and Automation Letters 2018. /\
CENTER
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Survelillance Planning with Bezier Curves |
Real Experimental Results e
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g 110
Hl piad
=
:".1 ';;
LA ﬁ_
60 Y 3
40 A
20
_______ T D
yimg: & s W 15 2 25 30
x [m]
20 15
s, Velocity and acceleration profiles
_____ — Vil (placmed) — sy i 50 mal)
= 10 Mac. velocity (cUVaNIE) __ o celeration (plmned) — Velocity {2nd wial)
N 5 . 10 _ = i T
0, ' o _ ) | _% Tz‘, 5 i i
- e - . g : 1 & e
" PN SR AT T | = ' i 4 :
| .__;__E;ﬂ*_ 5 =~ 1;% i
O Y . 5 &K ;
) ot A _ - p & 3
¥ [m] -.H:I 1 in 20 M i 5 il T L1 ] 0
% |m]
®m  Faigl and Vana: Surveillance Planning With Bézier Curves. IEEE Robotics and Automation Letters 2018. A.
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Data Collection Planning with Limited Travel Budget m

Dubins Orienteering Problem (with Neighborhoods)

= Visit the most important targets because of lim-
ited travel budget

B The problem can be formulated as the Dubins
Orienteering Problem (DOP)

® |t can be solved using sampling-based meth-
ods, e.g., with Variable Neighborhood Search
(VNS) combinatorial metaheuristic

et TEEr -
Ti.h !-- . e

®  Penicka, Faigl, Vana and Saska: Dubins Orienteering Problem. |EEE Robotics and Automation Letters 2017.

B Similarly the Dubins Orienteering Problem
with Neighborhoods (DOPN) can be formu-
lated and solved

= We need to sample the waypoint locations and
headings as in DTSPN

1 =
4 . r 1
’ L . v 1
i -2 3
|— EHH Plan with fs=il R=71 %
— T gy Ld

m  Penicka, Faigl, Saska and Vana: Dubins Orienteering Problem with Neighborhoods. ICUAS 2017. Ai
CENTER
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Recent Progress in Information Gathering and Surveillance

Summary

m Surveillance planning with curvature-constrained trajectory

= Dubins Traveling Salesman Problem (with Neighborhoods) — DTSPN
Informed sampling-based methods based on

s Tight lower bound for the DTSPN based on the GDIP

s 3D data collection planning with Dubins Airplane Model

® Fast unsupervised learning based methods for DTSPN

= Surveillance planning with Bézier curves

® Dubins Orienteering Problem (with Neighborhoods)

Altitule [m]
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People Behind the Scene

= The presented work are mostly results of my colleagues from the
Computational Robotics Laboratory and Multi-Robot Systems Group
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