Recent Progress in Information Gathering and Surveillance Missions Planning with Unmanned Aerial Vehicles

Recent Progress in Information Gathering and Surveillance Missions Planning with Unmanned Aerial Vehicles

Jan Faigl

Associate Professor – Department of Computer Science Head of Computational Robotics Laboratory

Artificial Intelligence Center (AIC)
Center for Robotics and Autonomous Systems (CRAS)

Faculty of Electrical Engineering
Czech Technical University in Prague

July 20, 2018

Czech Technical University in Prague Artificial Intelligence Center and Computational Robotics

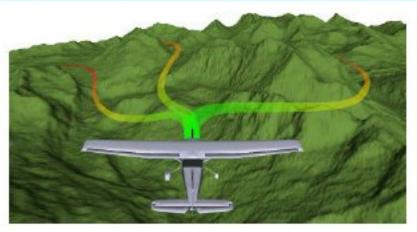
CZECH TECHNICAL UNIVERSITY IN PRAGUE

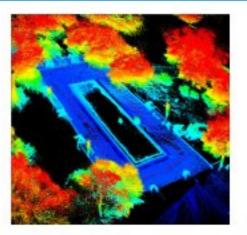
Established in 18 January, 1707

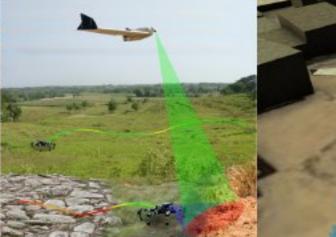
Foundation deed signed by Emperor Joseph I

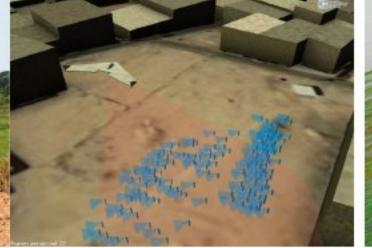
- About 21 000 students enrolled and 1 9000 academic employees – 8 faculties
- Faculty of Electrical Engineering (FEE)
 Department of Computer Science
 - First CS department in Czechia established in 1964 http://cs.felk.cvut.cz
- Artificial Intelligence Center (AIC)
 - Research in AI for more than 20 years http://aic.fel.cvut.cz
- Computational Robotics Laboratory (ComRob)
 https://comrob.fel.cvut.cz established in 2013
 - Focused on robotic information gathering a problem to create a model of phenomena by autonomous mobile robots performing measurements in dynamic unknown environment.
 - Mostly aerial and ground (multi-legged) robotic vehicles

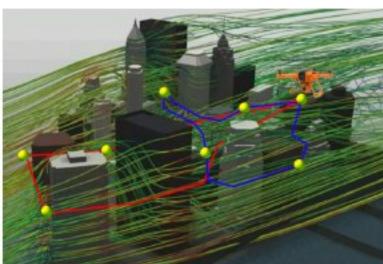
Information Gathering with Unmanned Aerial Vehicles (UAVs) – UAV Mapping and Surveillance Missions











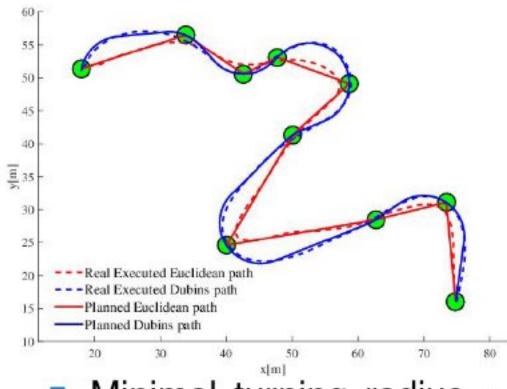
 Surveillance planning in Mohamed Bin Zayed International Robotic Challenge (MBZIRC) 2017

Data Collection Planning for Surveillance Missions with UAVs

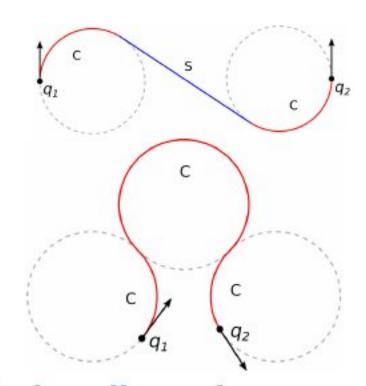
 Provide curvature-constrained path to collect the most valuable measurements with shortest possible path/time or under limited travel budget

- Can be formulated as routing problems with Dubins vehicle
 - Dubins Traveling Salesman Problem with Neighborhoods
 - Dubins Orienteering Problem with Neighborhoods

Planning Curvature-Constrained Multi-Goal Path Dubins Vehicle for Fixed-Wing and Multi-Rotor Vehicles



- Sharp turns can lead to high error of visiting the requested goals
- Planned paths should support precise trajectory following by the used controller
- Dubins vehicle can be used for curvatureconstrained paths
- Minimal turning radius ρ and constant forward velocity v with the state $q=(x,y,\theta)$, $q\in SE(2), (x,y)\in \mathbb{R}^2$ and $\theta\in \mathbb{S}^1$
- Optimal path connecting $q_1, q_2 \in SE(2)$ can be found analytically
- Two types of maneuvers: CSC and CCC (Dubins, 1957)



The main difficulty is to determine the vehicle headings for a given set/sequence of waypoints

Dubins Traveling Salesman Problem (DTSP)

Having a set of locations to be visited, the problem is to determine a closed shortest Dubins path visiting each location $p_i \in P$ of the given set of n locations $P = \{p_1, \dots, p_n\}, p_i \in \mathbb{R}^2$

- 1. Permutation $\Sigma = (\sigma_1, \dots, \sigma_n)$ of visits

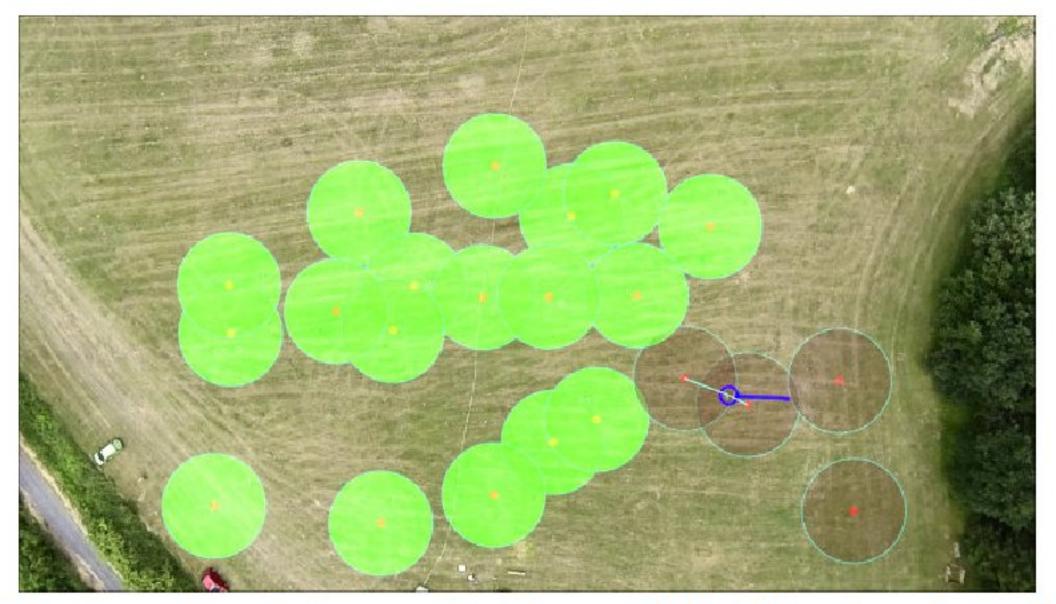
 Sequencing part of the problem combinatorial optimization
- 2. Headings $\Theta = \{\theta_{\sigma_1}, \theta_{\sigma_2}, \dots, \theta_{\sigma_n}\}$ for $p_{\sigma_i} \in P$ Continuous optimization
- DTSP is an optimization problem over all possible permutations Σ and headings Θ in the states $(q_{\sigma_1}, q_{\sigma_2}, \ldots, q_{\sigma_n})$ such that $q_{\sigma_i} = (p_{\sigma_i}, \theta_{\sigma_i})$

minimize
$$\sum_{i=1}^{n-1} \mathcal{L}(q_{\sigma_i}, q_{\sigma_{i+1}}) + \mathcal{L}(q_{\sigma_n}, q_{\sigma_1})$$
 (1)
subject to $q_i = (p_i, \theta_i) \ i = 1, \dots, n,$ (2)

where $\mathcal{L}(q_{\sigma_i}, q_{\sigma_j})$ is the length of Dubins path between q_{σ_i} and q_{σ_j} .

Surveillance Missions with Non-Zero Sensing Radius DTSP with Neighborhoods

ullet Exploiting non-zero sensing range δ to shorten the requested multi-goal path

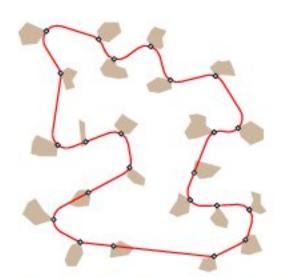


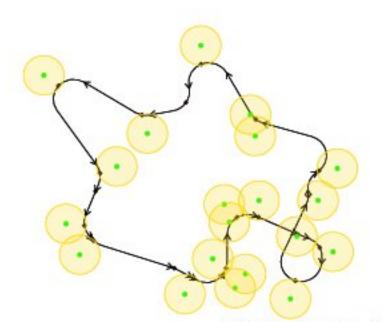
■ Dubins Traveling Salesman Problem with Neighborhoods (DTSPN) – determine the sequence of visits Σ , headings Θ , but also the waypoint

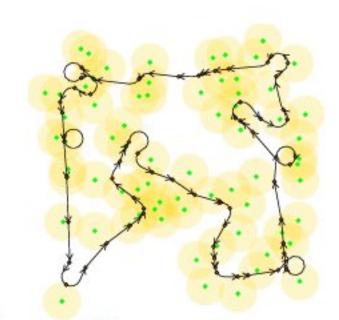
locations within the respective neighborhoods $P = \{p_1, \dots, p_n\}, p_i \in \mathbb{R}^2$

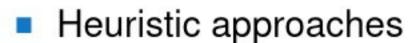
Existing Approaches to the DTSP(N) Heuristics, Resolution Complete, and Sampling-based

- Obermeyer, 2009
- Oberlin et al., 2010
- Macharet et al., 2016
- Convex optimization
 - (Only if the locations are far enough)
 - Goac et al., 2013
- Lower-bound for the DTSP
 - Using Dubins Interval Problem (DIP)
 - Manyam et al., 2016
- Lower-bound for the DTSPN
 - Using Generalized DIP (GDIP)
 - Váňa and Faigl, 2018





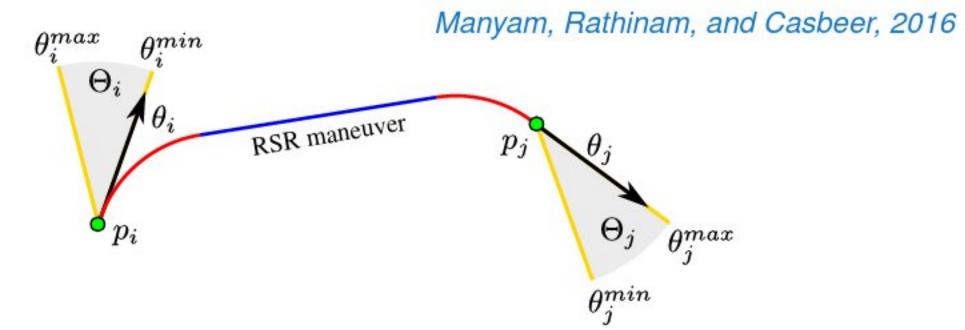




- Savla et al., 2005
- Ma and Castanon, 2006
- Macharet et al., 2011
- Macharet et al., 2012
- Ny et al., 2012
- Yu and Hang, 2012
- Macharet et al., 2013
- Zhant et al., 2014
- Macharet and Campost, 2014
- Váňa and Faigl, 2015
- Isaiah and Shima, 2015
- • •

Theoretical Guarantees – Lower-Bound using solution of Dubins Interval Problem (DIP)

- Determine the shortest Dubins maneuver connecting p_i and p_j given the angle intervals $\theta_i \in [\theta_i^{min}, \theta_i^{max}]$ and $\theta_j \in [\theta_i^{min}, \theta_i^{max}]$
- DIP has closed-form solution



- For the intervals $\Theta_i = \Theta_j = [0, 2\pi)$, the solution is the length of the straight line segment
- It provides lower-bound of the length of the shortest Dubins maneuver connecting p_i and p_j

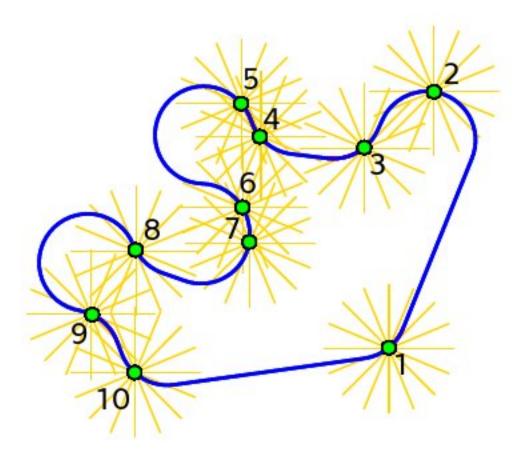
Sampling-based Solution of the DTSP with a Given Sequence of Visits Σ – Dubins Touring Problem (DTP)

For a sequence of the waypoint locations

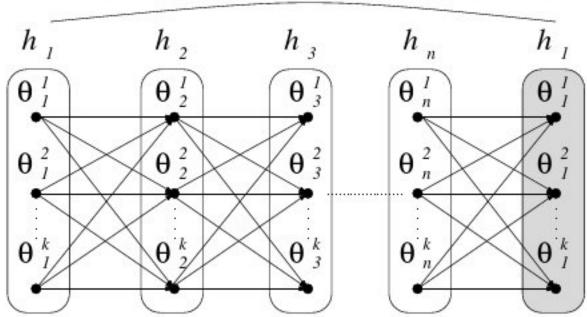
$$P = (p_1, \ldots, p_n)$$

E.g., found as a solution of the Euclidean TSP

We can sample possible heading values at each location i into a discrete set of k headings, i.e., $h_i = \{\theta_i^1, \dots, \theta_i^k\}$ and create a graph of all possible Dubins maneuvers



The first layer is duplicated layer to support the forward search method



- For a set of heading samples, the optimal solution can be found by a forward search of the graph in O(nk³)
- The key is to determined the most suitable heading samples per each waypoint
- The lower bound can be found using DIP

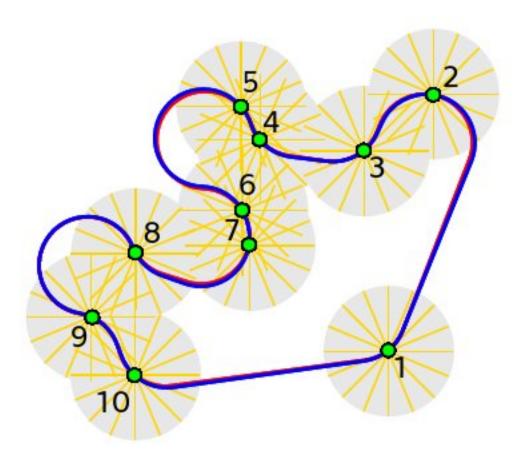
Sampling-based Solution of the DTSP with a Given Sequence of Visits Σ – Dubins Touring Problem (DTP)

For a sequence of the waypoint locations

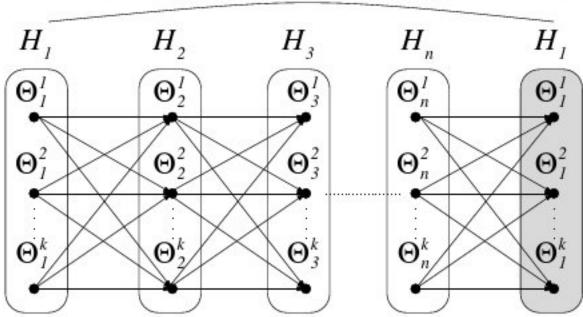
$$P = (p_1, \ldots, p_n)$$

E.g., found as a solution of the Euclidean TSP

• We can sample possible heading values at each location i into a discrete set of k headings, i.e., $h_i = \{\theta_i^1, \dots, \theta_i^k\}$ and create a graph of all possible Dubins maneuvers



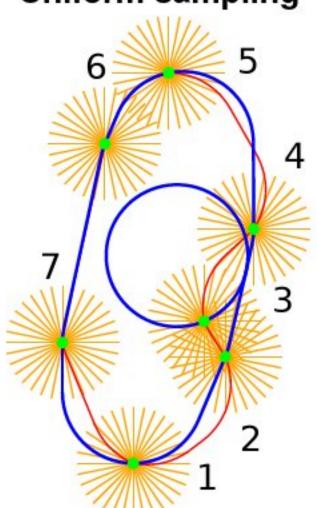
The first layer is duplicated layer to support the forward search method



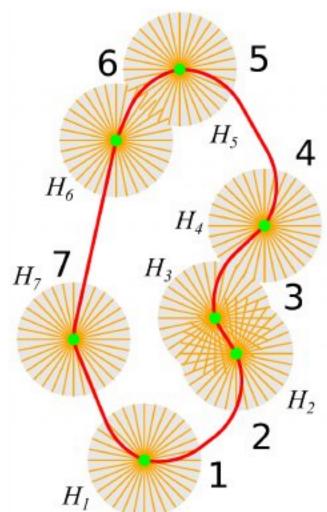
- For a set of heading samples, the optimal solution can be found by a forward search of the graph in O(nk³)
- The key is to determined the most suitable heading samples per each waypoint
- The lower bound can be found using DIP

Sampling-based Solution of the DTSP (as the DTP) Uniform vs Informed Sampling of the Headings

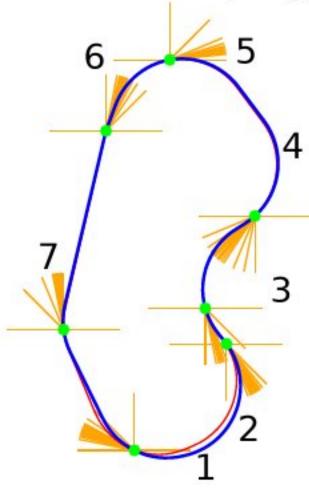
Uniform sampling



Lower Bound Solution



N=224, $T_{cpu}=128$ ms Lower bound \mathcal{L}_U based on N=128, $T_{cpu}=76$ ms $\mathcal{L} = 19.8, \mathcal{L}_U = 13.8,$ the Dubins Interval Problem



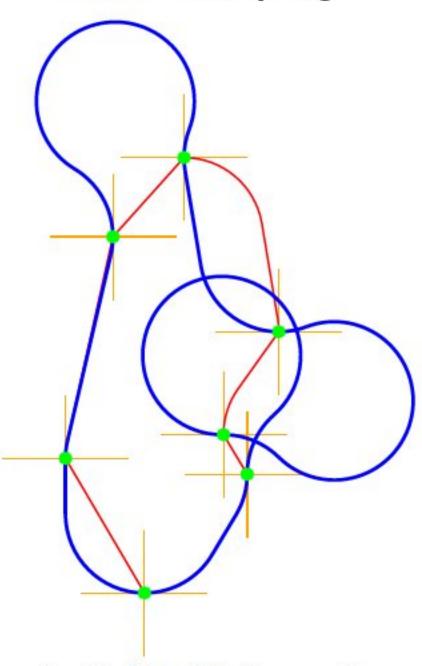
$$N = 128, T_{cpu} = 76 \text{ ms}$$

 $\mathcal{L} = 14.4, \mathcal{L}_U = 14.2,$

- N the total number of samples (up to 32 samples per waypoint)
- \mathcal{L} is the length of the tour (blue) and $\mathcal{L}_{\mathcal{U}}$ is the lower bound (red) determined as a solution of the **Dubins Interval Problem (DIP)**
- Faigl et al.: On solution of the Dubins touring problem. ECMR 2017.

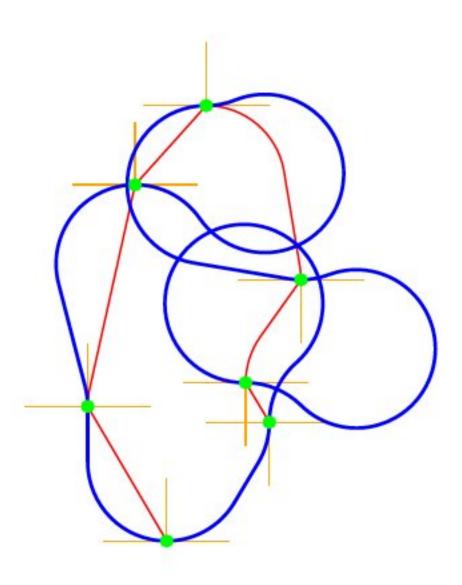
Refinement iteration 1, the angular resolution $2\pi/4$

Uniform sampling



$$\epsilon = 2\pi/4, \, N = 28, \, T_{CPU} = 8 \, \text{ms}$$

 $\mathcal{L} = 27.9, \, \mathcal{L}_{U} = 13.2$

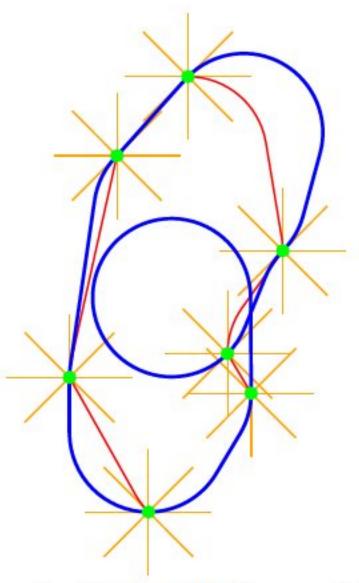


$$\epsilon = 2\pi/4$$
, $N = 21$, $T_{CPU} = 8$ ms $\mathcal{L} = 29.9$, $\mathcal{L}_{U} = 13.2$

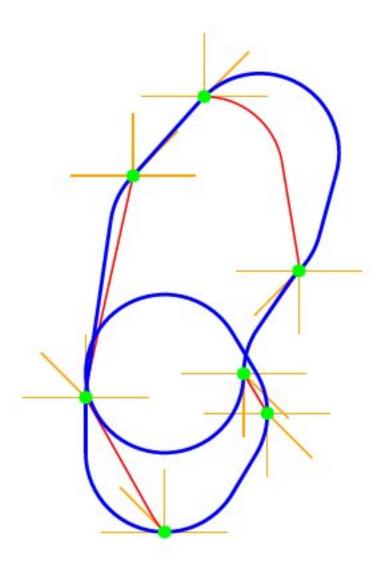
Refinement iteration 1, the angular resolution $2\pi/8$

Uniform sampling

Informed sampling



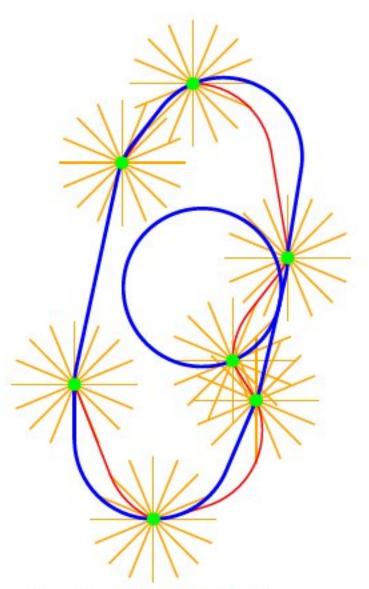
 $\epsilon = 2\pi/8$, N = 56, $T_{CPU} = 16$ ms $\mathcal{L} = 20.8$, $\mathcal{L}_{U} = 13.2$



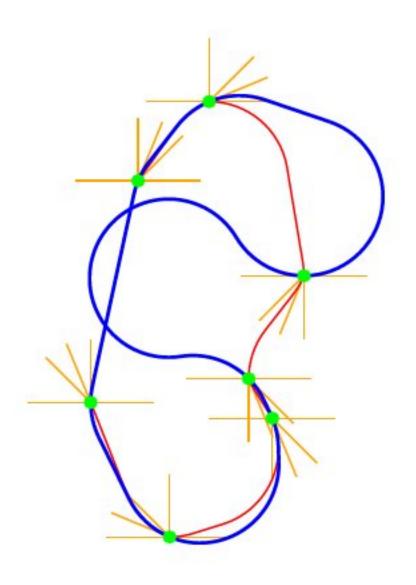
$$\epsilon=2\pi/8,\, N=28,\, T_{CPU}=20$$
 ms $\mathcal{L}=21.0,\, \mathcal{L}_{U}=13.2$

Refinement iteration 1, the angular resolution $2\pi/16$

Uniform sampling



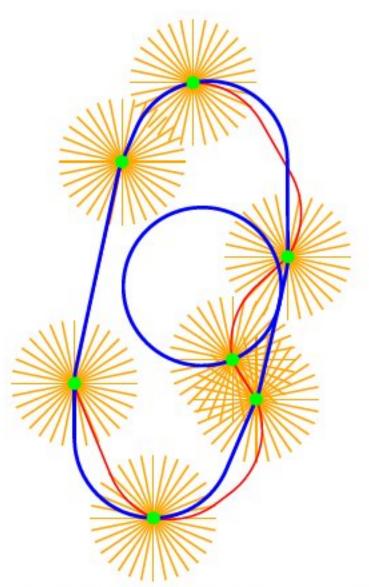
$$\epsilon = 2\pi/16, \, N = 112, \, T_{CPU} = 40 \, \, \text{ms}$$
 $\mathcal{L} = 20.3, \, \mathcal{L}_{U} = 13.5$



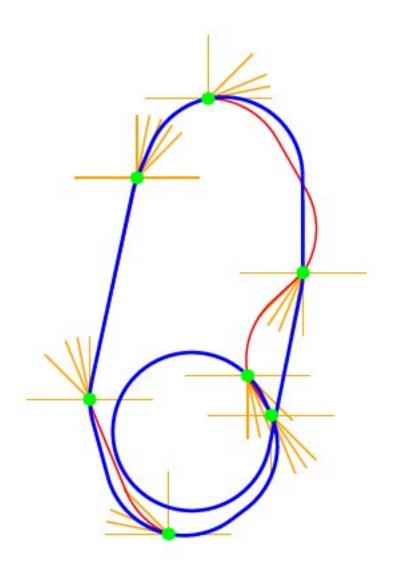
$$\epsilon = 2\pi/16$$
, $N = 35$, $T_{CPU} = 24$ ms $\mathcal{L} = 20.1$, $\mathcal{L}_{U} = 13.5$

Refinement iteration 1, the angular resolution $2\pi/32$

Uniform sampling



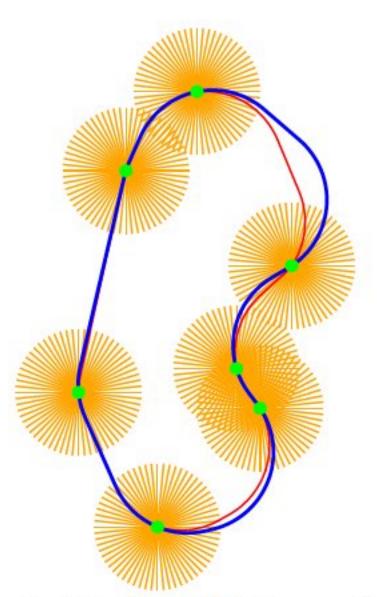
$$\epsilon = 2\pi/32, \, N = 224, \, T_{CPU} = 140 \, \, \text{ms}$$
 $\mathcal{L} = 19.8, \, \mathcal{L}_{U} = 13.8$



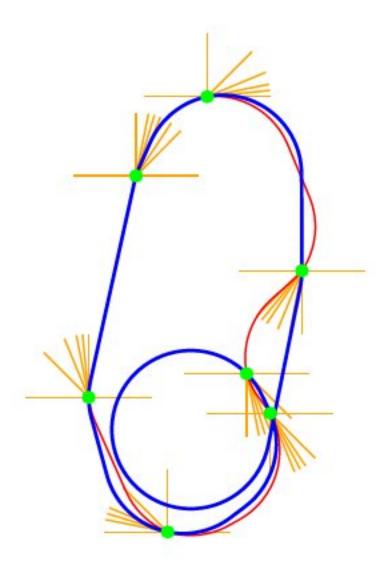
$$\epsilon = 2\pi/32, \, N = 44, \, T_{CPU} = 32 \, \text{ms}$$
 $\mathcal{L} = 19.9, \, \mathcal{L}_{U} = 13.8$

Refinement iteration 1, the angular resolution $2\pi/64$

Uniform sampling



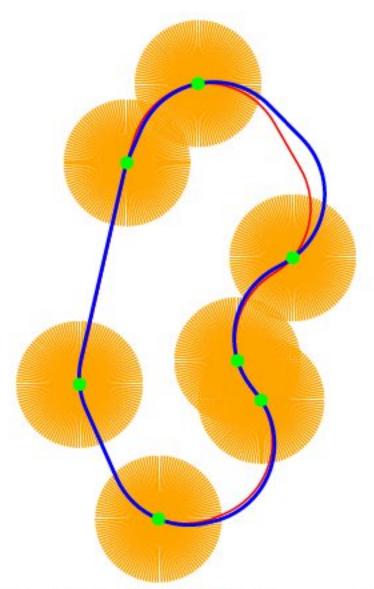
$$\epsilon = 2\pi/64, \, N = 448, \, T_{CPU} = 456 \, \text{ms}$$
 $\mathcal{L} = 14.5, \, \mathcal{L}_{U} = 14.5$



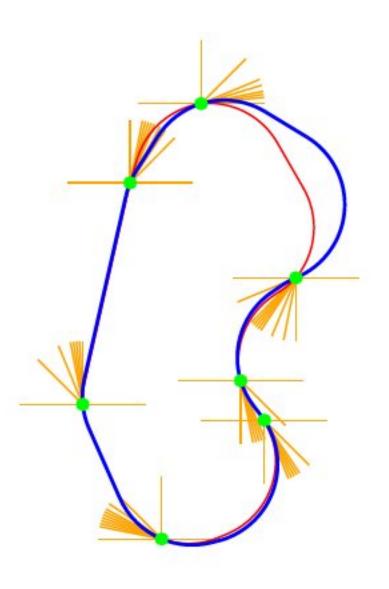
$$\epsilon = 2\pi/64, \, N = 51, \, T_{CPU} = 48 \text{ ms}$$
 $\mathcal{L} = 19.9, \, \mathcal{L}_{U} = 13.9$

Refinement iteration 1, the angular resolution $2\pi/128$

Uniform sampling



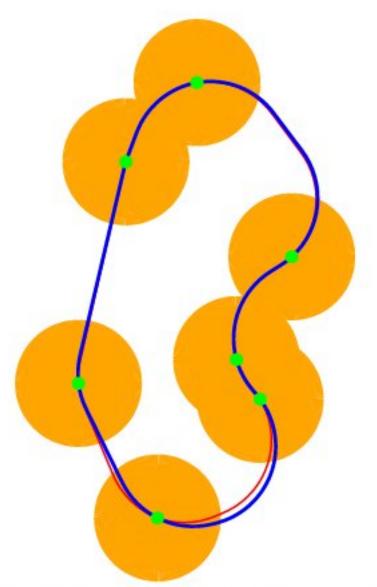
$$\epsilon = 2\pi/128, \, N = 896, \, T_{CPU} = 1620 \, \text{ms}$$
 $\mathcal{L} = 14.5, \, \mathcal{L}_{U} = 14.5$



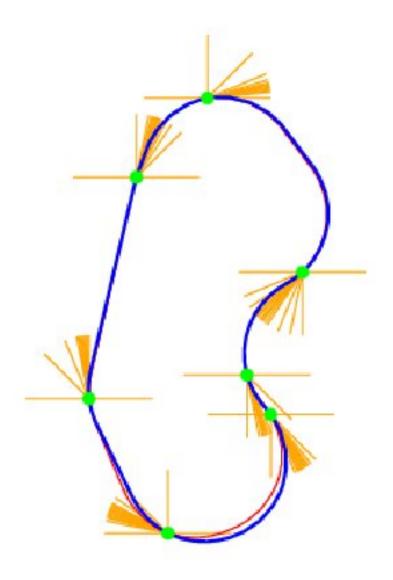
$$\epsilon=2\pi/128,\, N=70,\, T_{CPU}=60$$
 ms $\mathcal{L}=14.8,\, \mathcal{L}_{U}=14.1$

Refinement iteration 1, the angular resolution $2\pi/256$

Uniform sampling



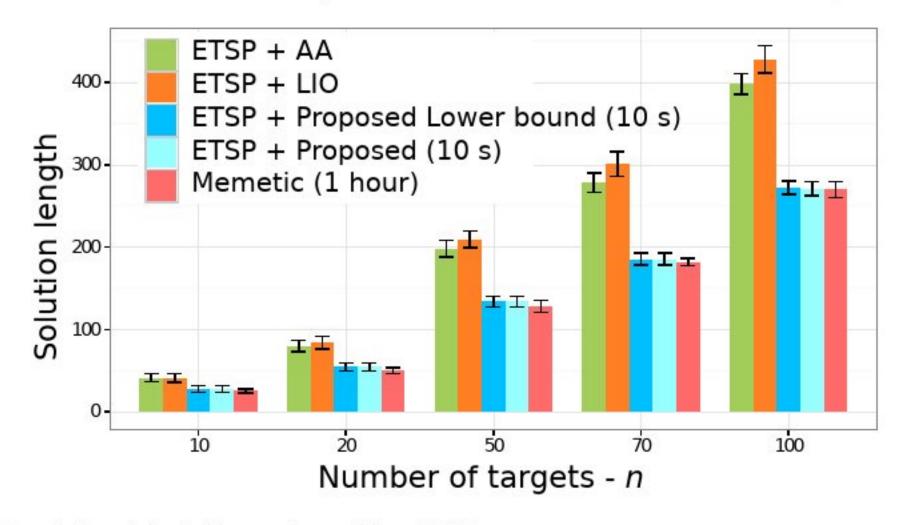
$$\epsilon = 2\pi/256, \, N = 1792, \, T_{CPU} = 6784 \, \text{ms}$$
 $\mathcal{L} = 14.4, \, \mathcal{L}_{U} = 14.3$



$$\epsilon=2\pi/256, N=100, T_{\text{CPU}}=88~\text{ms}$$
 $\mathcal{L}=14.4, \mathcal{L}_{\textit{U}}=14.3$

DTSP with Lower Bound Guided Sampling Comparison with Other Approaches

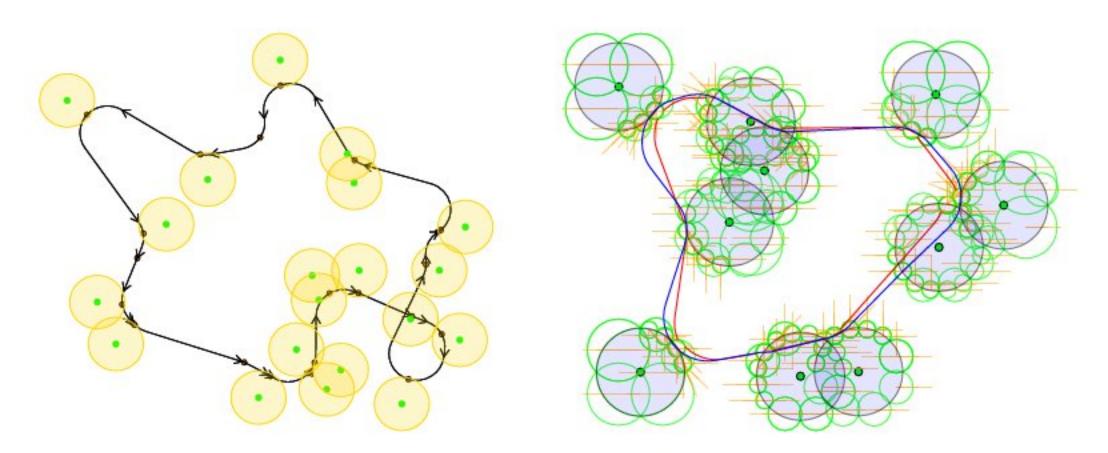
- Comparison with the Alternating Algorithm (AA), Local Iterative Optimization (LIO), and Memetic algorithm
 AA Savla et al., 2005, LIO Váňa & Faigl, 2015, Memetic Zhang et al. 2014
- A sequence of the waypoint locations is determined as the Euclidean TSP (ETSP)
 E.g., as in the Alternating Algorithm (AA)
- In Memetic algorithm, similarly to the sampling-based approaches that solve the Generalized TSP, the best sequence of visits is determined during the solution



Faigl et al.: On solution of the Dubins touring problem. ECMR 2017.

Lower Bound for the DTSP with Neighborhoods Generalized Dubins Interval Problem

- In the DTSPN, we need to determined not only the headings, but the waypoint locations themselves
- Dubins Interval Problem is not sufficient to provide tight lower-bound



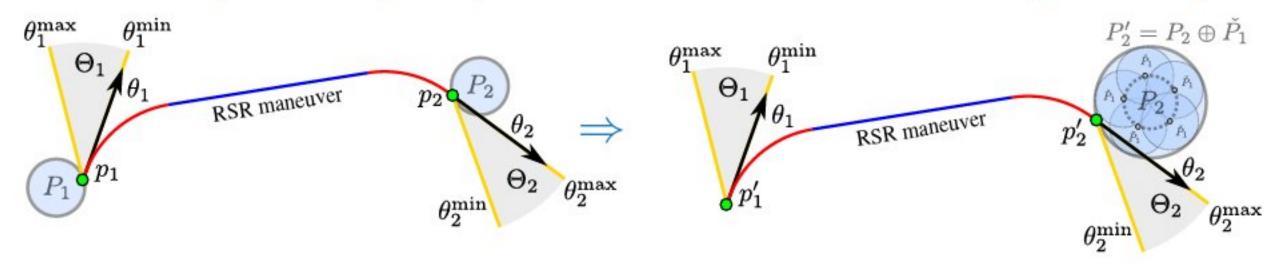
 Generalized Dubins Interval Problem (GDIP) can be utilized for the DTSPN similarly as the DIP for the DTSP

Generalized Dubins Interval Problem (GDIP)

Determine the shortest Dubins maneuver connecting P_i and P_j given the angle intervals $\theta_i \in [\theta_i^{min}, \theta_i^{max}]$ and $\theta_j \in [\theta_j^{min}, \theta_j^{max}]$

Full problem (GDIP)

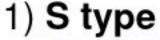
One-side version (OS-GDIP)

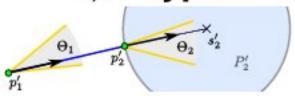


- Transformation from the GDIP to the OS-GDIP:
 - $P'_1 = \{p'_1\} = \{(0,0)\}$
 - $P_2' = P_2 \oplus P_1 = \bigcup \{p_b p_a, p_a \in P_1, p_b \in P_2\}$
- A closed-form solution can be found for the OS-GDIP
- Váňa and Faigl: Optimal Solution of the Generalized Dubins Interval Problem, RSS 2018.

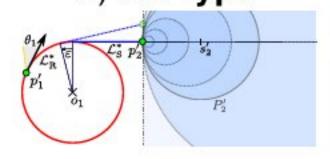
Optimal Solution of the GDIP

Closed-form expressions (1-6)

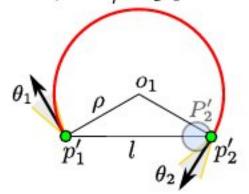




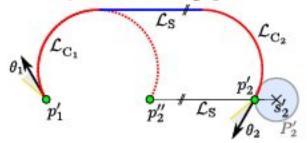
2) CS type



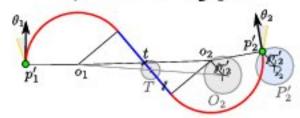
3) C_{ψ} type



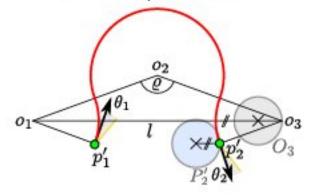
4) CSC type



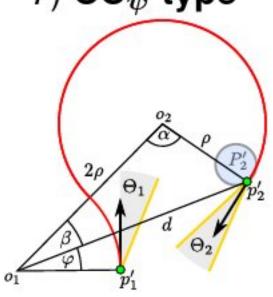
5) CSC type



6) CC_ψC type



Convex optimization (7)



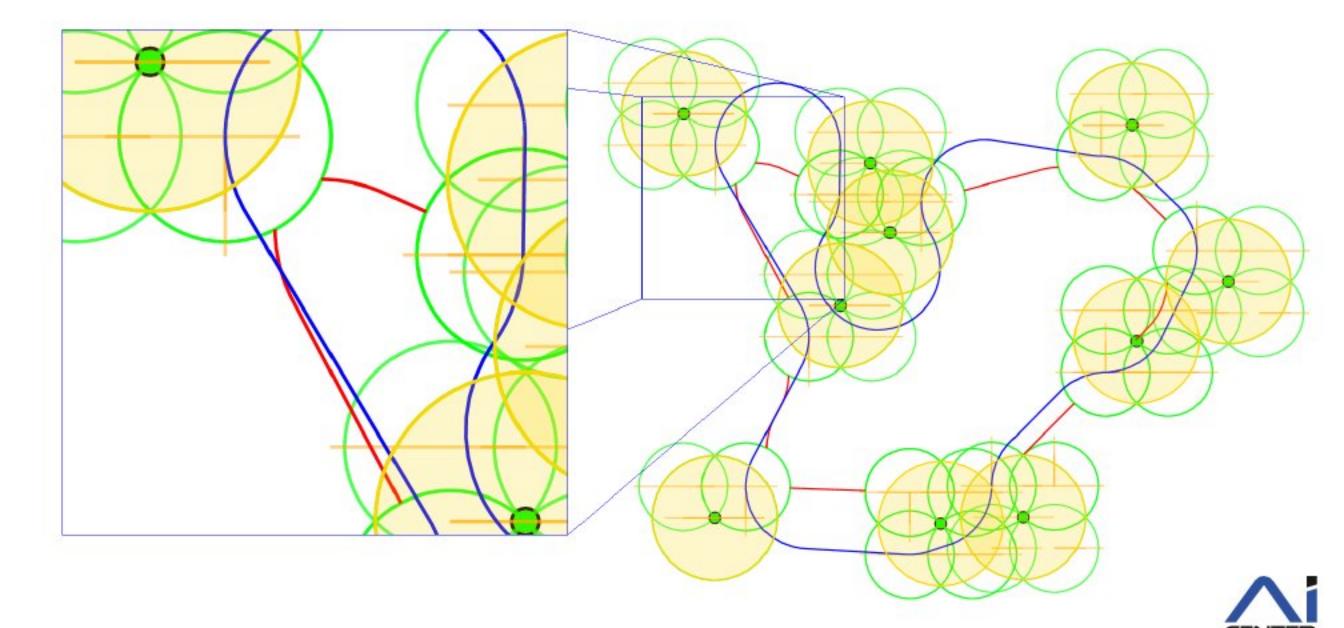
Average computational time

Problem	Time [μ s]	Ratio
Dubins maneuver	0.58	1.00
DIP	2.86	4.93
GDIP	12.63	21.78

https://github.com/comrob/gdip

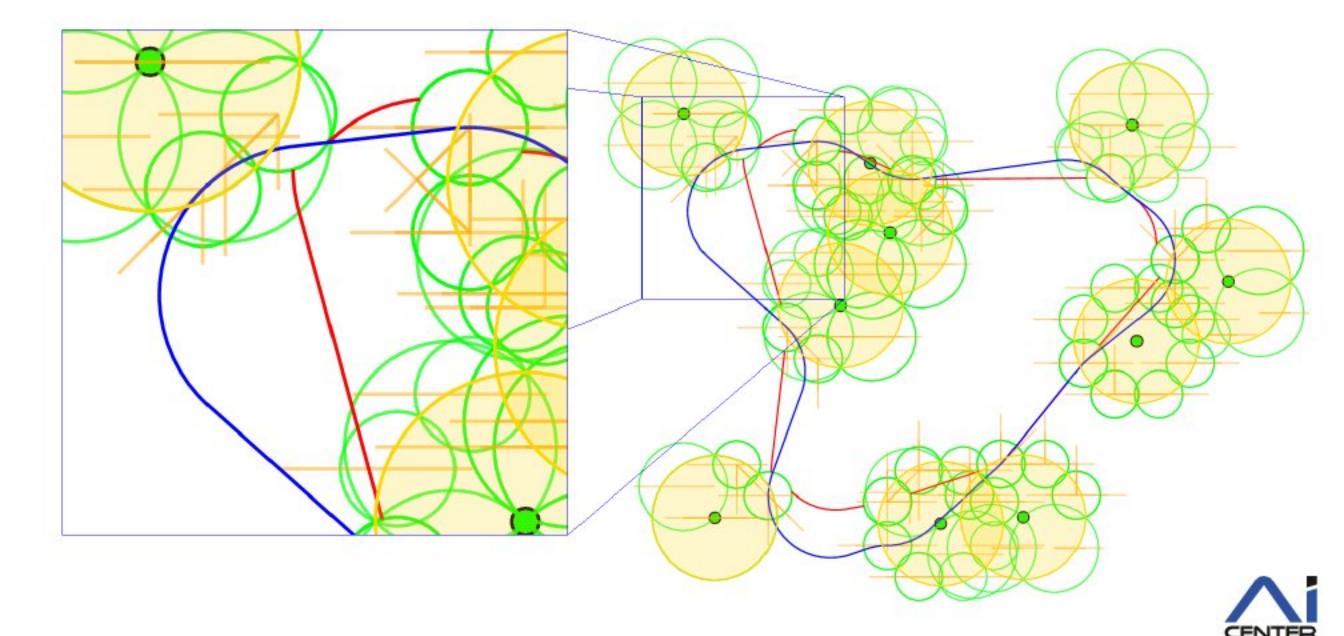
Iterative refinement of the neighborhood samples and heading samples

Resolution: 4 Gap: 69.3 % Time: 0.079 s



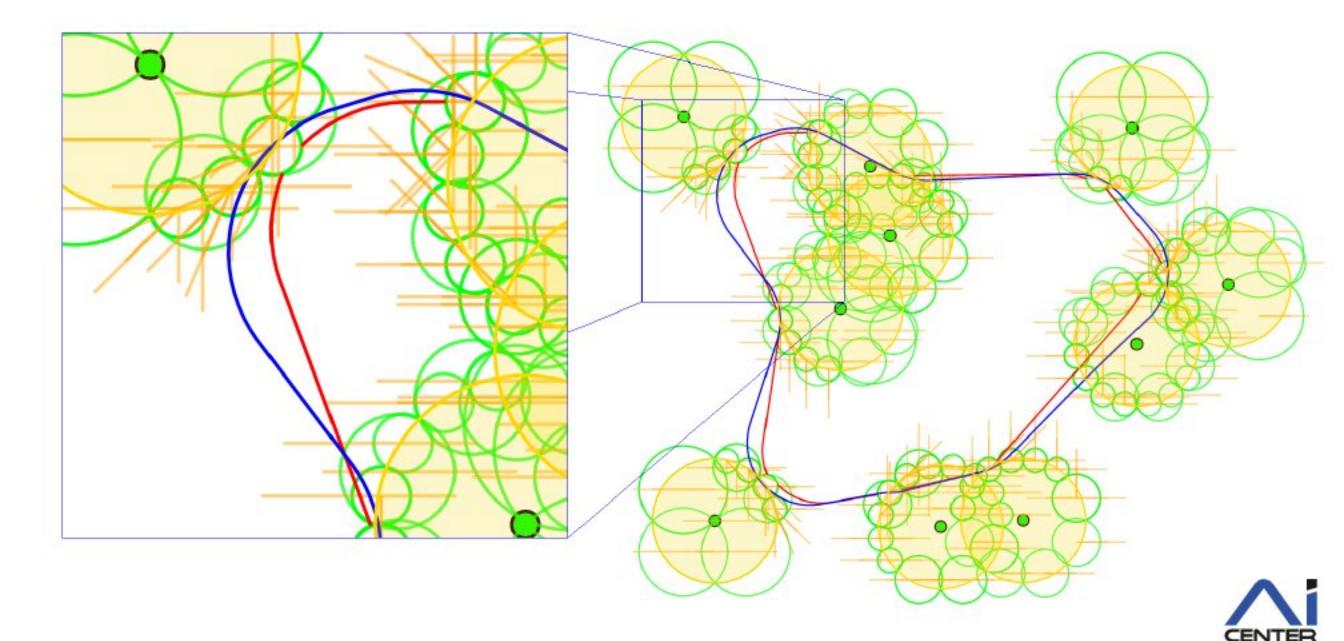
Iterative refinement of the neighborhood samples and heading samples

Resolution: 8 Gap: 39.4 % Time: 0.211 s



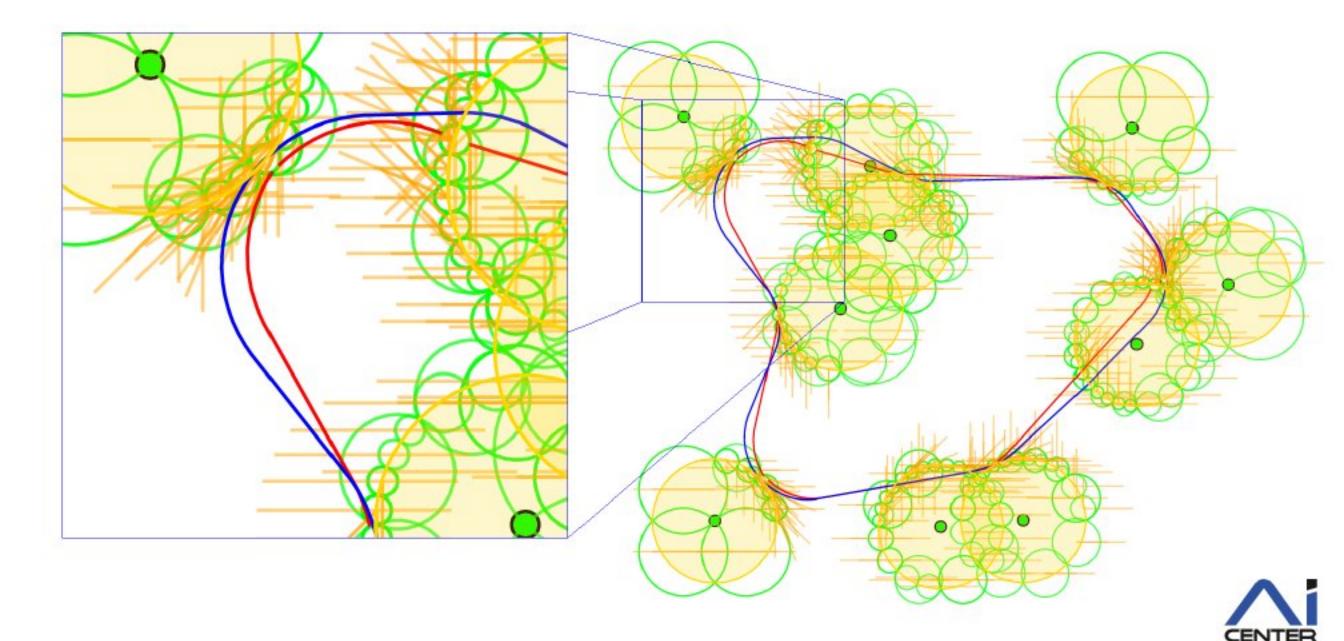
Iterative refinement of the neighborhood samples and heading samples

Resolution: 16 Gap: 19.9 % Time: 0.552 s



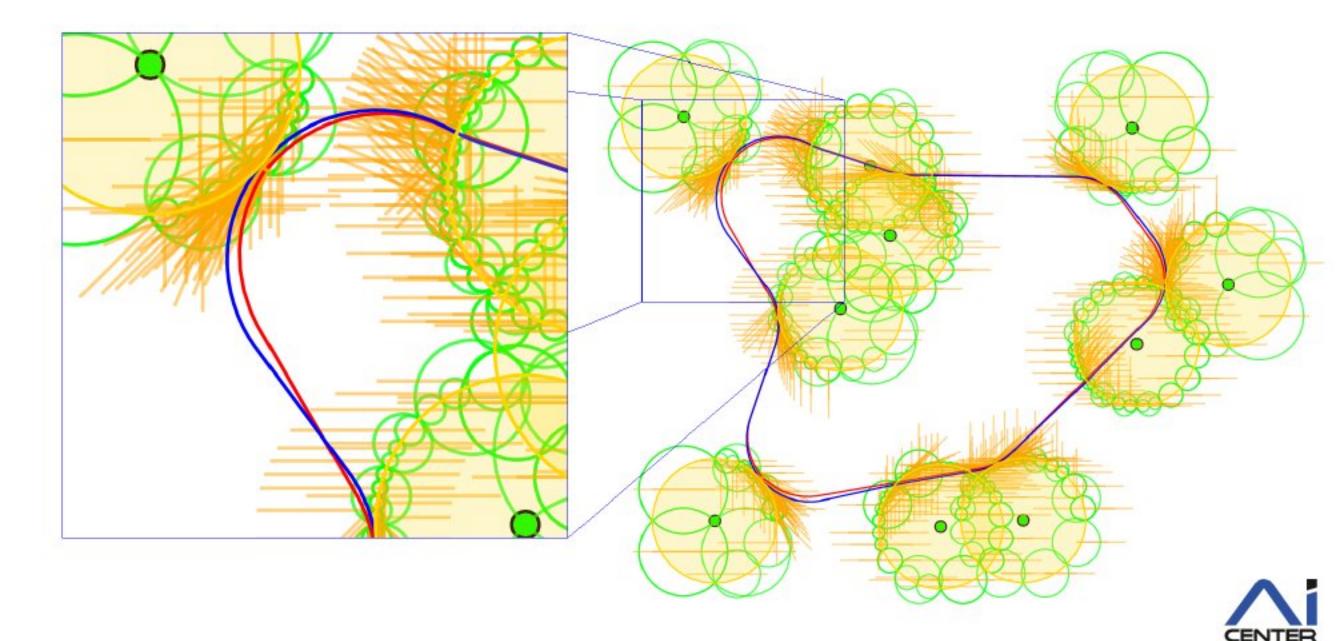
Iterative refinement of the neighborhood samples and heading samples

Resolution: 32 Gap: 10.7 % Time: 1.292 s



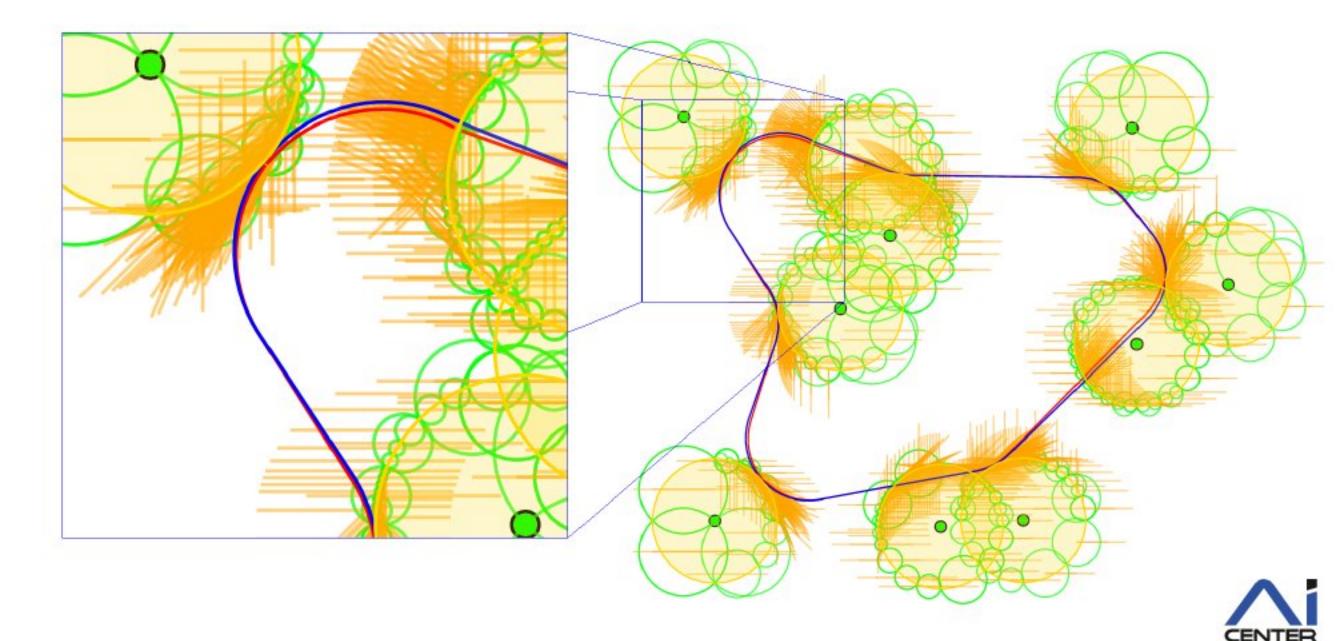
Iterative refinement of the neighborhood samples and heading samples

Resolution: 64 Gap: 5.3 % Time: 3.183 s



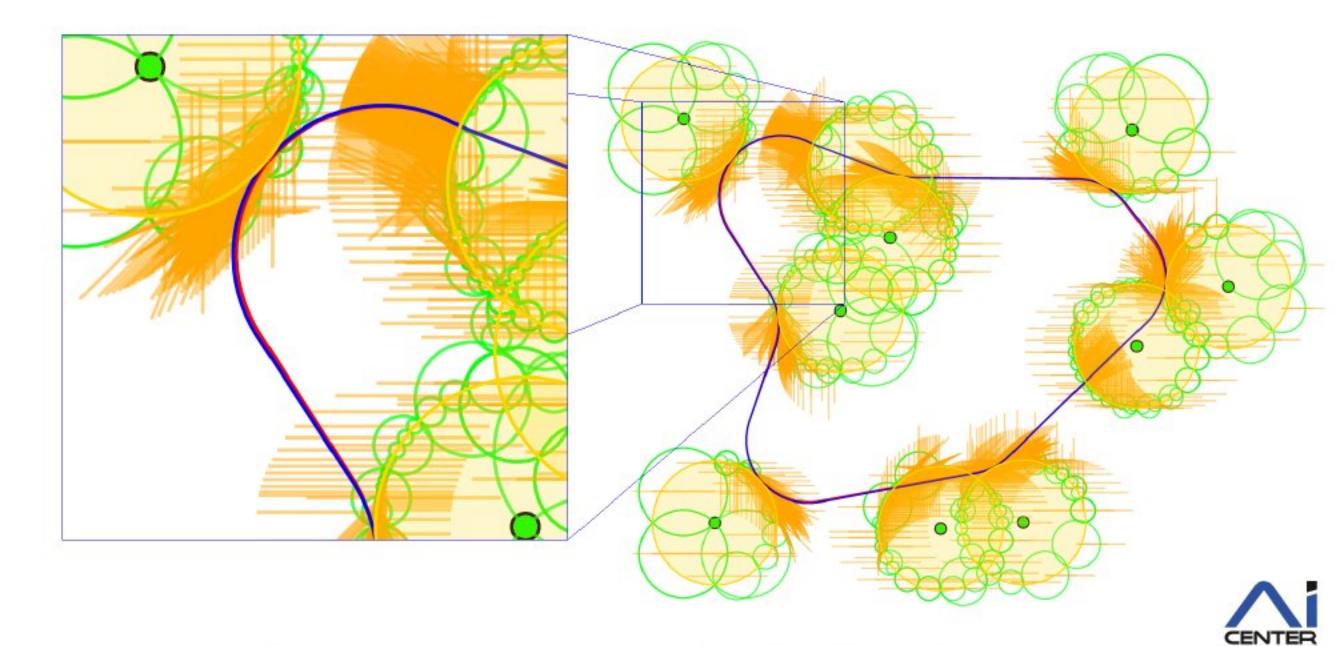
Iterative refinement of the neighborhood samples and heading samples

Resolution: 128 Gap: 2.6 % Time: 8.994 s



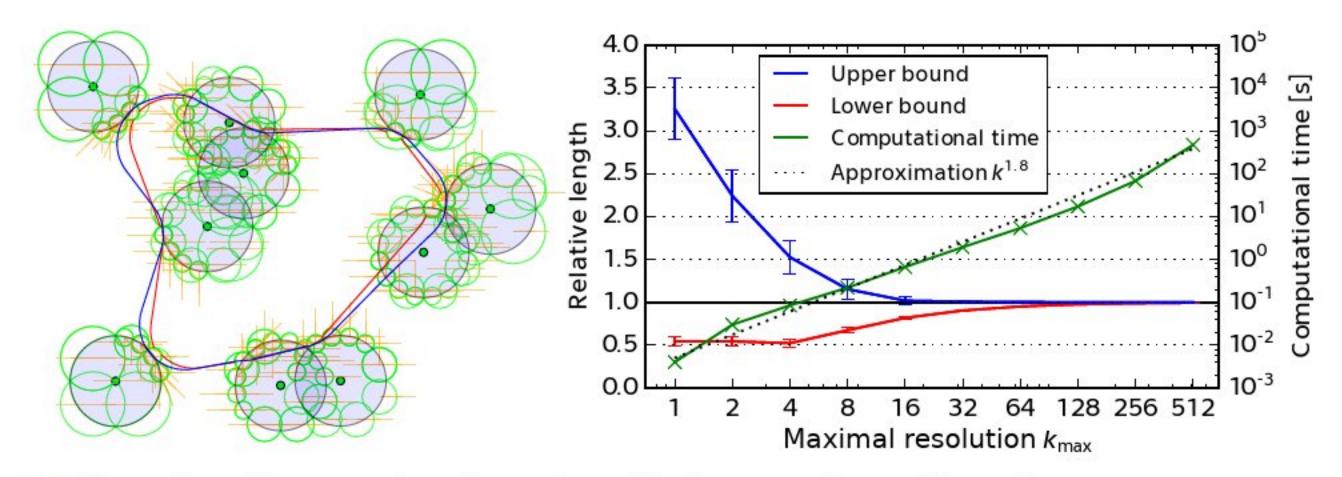
Iterative refinement of the neighborhood samples and heading samples

Resolution: 256 Gap: 1.3 % Time: 33.474 s



DTSPN – Convergence to the Optimal Solution

For a given sequence of visits to the target regions (locations)



- The algorithm scales linearly with the number of locations
- Complexity of the algorithm is approximately $\mathcal{O}(nk^{1.8})$

https://github.com/comrob/gdip

Váňa and Faigl: Optimal Solution of the Generalized Dubins Interval Problem, RSS 2018.

Motivation for Surveillance Planning with Multiple UAVs in MBZIRC 2017 Scenario

 Provide curvature-constrained paths for a team of autonomous unmanned aerial vehicles to verify expected objects of interest

 $v=5~{\rm m.s^{-1}}$, 80 m \times 60 m testing site for experimental verification of our system for the Mohamed Bin Zayed International Robotics Challenge (MBZIRC)

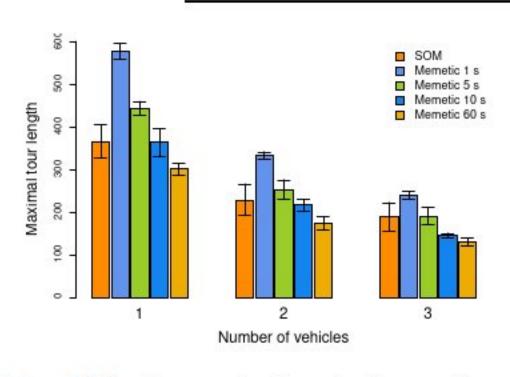
- Sampling-based methods are relatively slow
- Desired properties of the requested surveillance mission planner are: fast trajectories and low computational time (≤ 1 s)

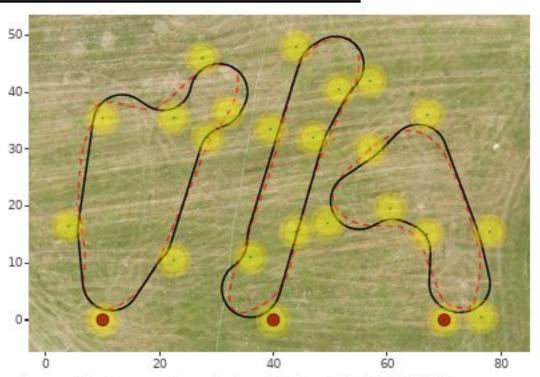
Unsupervised Learning for Surveillance Planning with Team of Aerial Vehicles

- Fast heuristic solution based on unsupervised learning for routing problems

 Solutions found in less than 0.6 second for the MBZIRC 2017 scenarios
- Comparison with Memetic algorithm (Zhang et al., 2014) restricted to the maximal computational time $T_{max} \in \{1, 5, 10, 60\}$ seconds and k vehicles

k	Memetic 1 s	Memetic 10 s	Unsupervised Learning	
	L_{max} [m]	L_{max} [m]	L_{max} [m]	T [s]
1	586.01 (24.22)	376.52 (27.17)	363.38 (36.56)	0.55 (0.07)
2	335.83 (10.67)	212.18 (18.73)	223.76 (40.76)	0.53 (0.01)
3	240.67 (6.63)	153.37 (12.79)	180.12 (29.49)	0.53 (0.03)

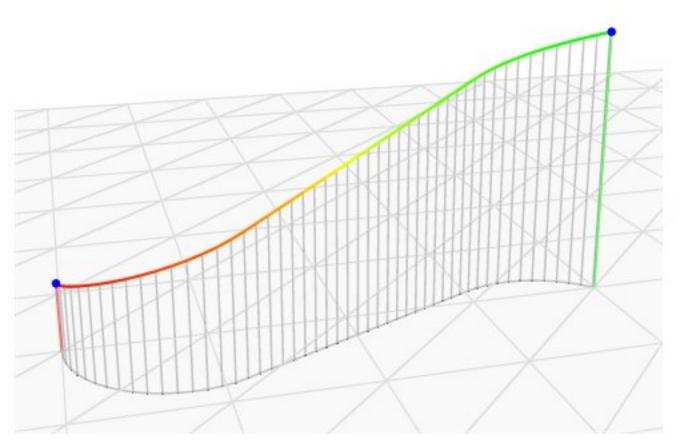


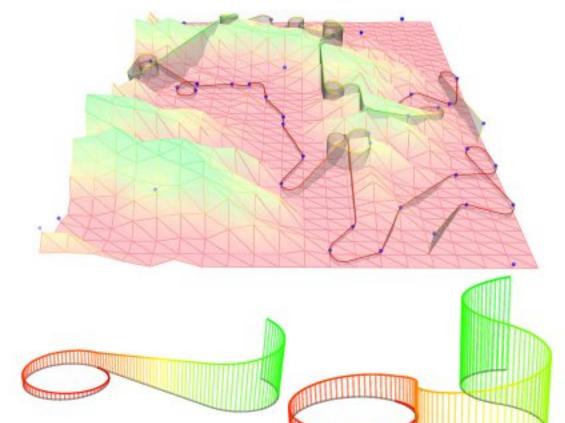


- Faigl and Váňa: Unsupervised learning for surveillance planning with team of aerial vehicles. IJCNN 2017.
- Faigl: GSOA: Growing Self-Organizing Array—Unsupervised Learning for the Close-Enough Traveling Salesman Problem and Other Routing Problems. Neurocomputing 2018.

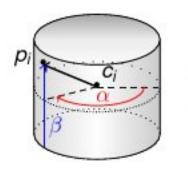
3D Data Collection Planning with Dubins Airplane Model Dubins Traveling Salesman Problem (DTSPN) in 3D

- Dubins Airplane model describes the vehicle state $q=(p,\theta,\psi)$, $p\in\mathbb{R}^3$ and $\theta,\psi\in\mathbb{S}^1$ as Chitsaz, H., LaValle, S.M. (2017)
- Constant forward velocity v, the minimal turning radius ρ , and limited pitch angle, i.e., $\psi \in [\psi_{min}, \psi_{max}]$

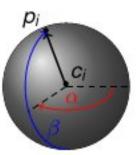


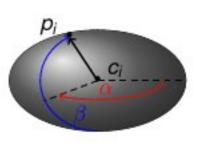


 Parametrization of 3D regions to be visited



CSC maneuver



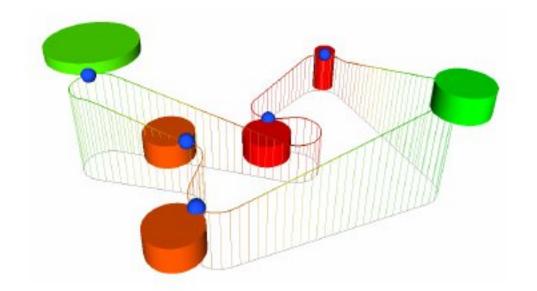


CCC maneuver

Váňa and Faigl: The Dubins Traveling Salesman Problem with Neighborhoods in the Three-Dimensional Space.
 ICRA 2018.

3D Data Collection Planning with Dubins Airplane Model Solutions of the 3D-DTSPN

CTU

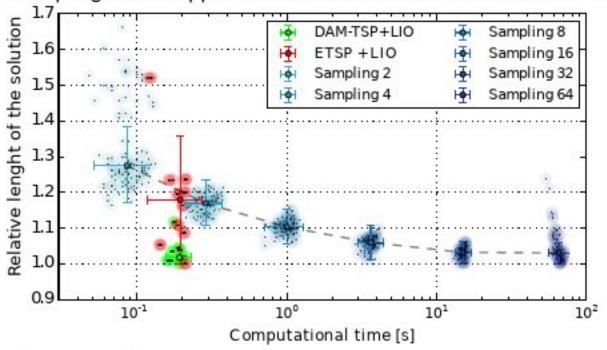


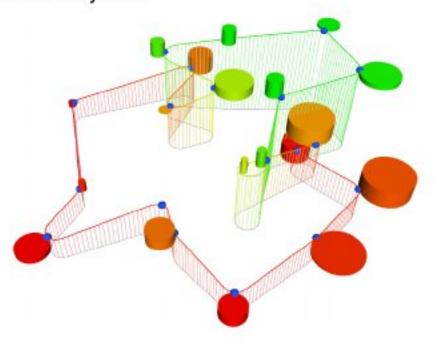
Algorithm 1: LIO-based Solver for 3D-DTSPN

Data: Regions R

Result: Solution represented by Q and Σ

- 1 Σ ← getInitialSequence(R);
- 2 $Q \leftarrow getInitialSolution(\mathcal{R}, \Sigma)$;
- 3 while terminal condition do
- 4 Q ← optimizeHeadings(Q, R, Σ);
- $Q \leftarrow \text{optimizeAlpha}(Q, \mathcal{R}, \Sigma);$
- 6 Q ← optimizeBeta(Q, R, Σ);
- 7 end
- 8 return Q, Σ;
- Solutions based on LIO (ETSP+LIO), TSP with the travel cost according to Dubins Airplane Model (DAM-TSP+LIO), and sampling-based approach with transformation of the GTSP to the ATSP solved by LKH



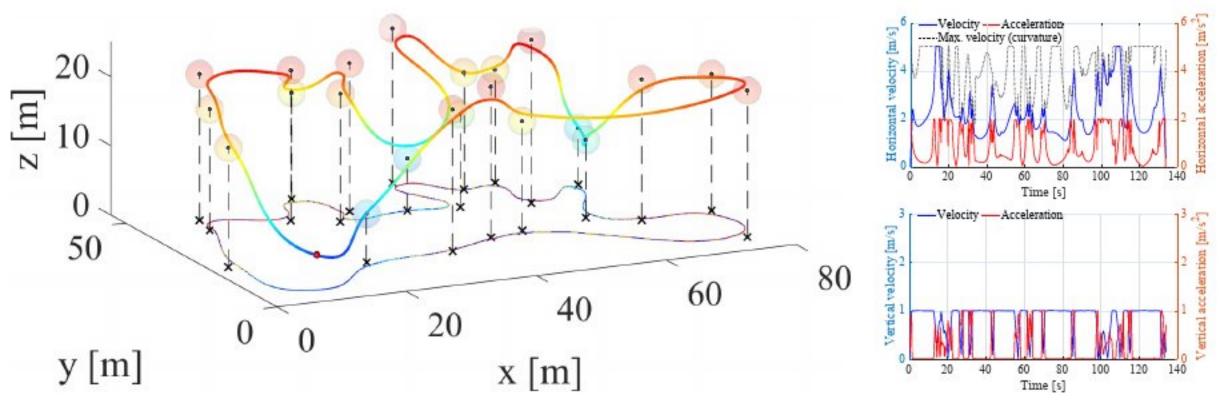


- Váňa and Faigl: On the Dubins Traveling Salesman Problem with Neighborhoods. IROS 2015.
- Váňa et al.: Data collection planning with Dubins airplane model and limited travel budget. ECMR 2017.
- Váňa and Faigl: The Dubins Traveling Salesman Problem with Neighborhoods in the Three-Dimensional Space. ICRA 2018.

Surveillance Planning with Bézier Curves DTSPN with Parametrization of 3D Smooth Trajectory

- Multi-rotor aerial vehicles can generally move in arbitrary direction
 - DTSPN variant for surveillance planning with 3D trajectory

- Find a 3D smooth trajectory visiting a given set of 3D regions
- Minimizes the Travel Time Estimation (TTE)
- Satisfies limited velocity and acceleration of the vehicle



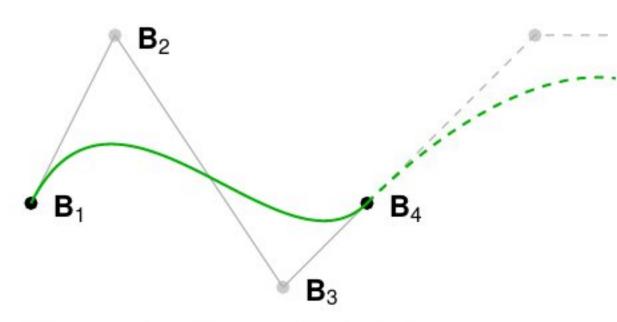
High altitudes changes saturate vertical velocity

Faigl and Váňa: Surveillance Planning With Bézier Curves. IEEE Robotics and Automation Letters 2018.

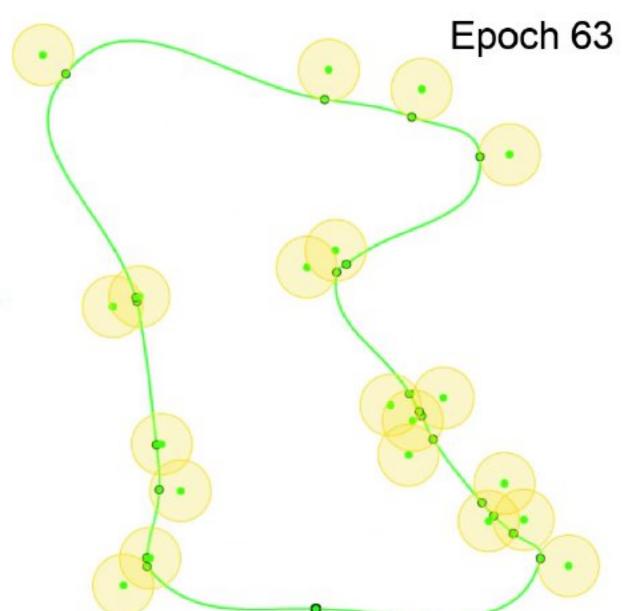
Unsupervised Learning using Bézier Curves

Benefits of Bézier curves

- Flexible and easy to use
- Start/end direction is given by the first/last two control points



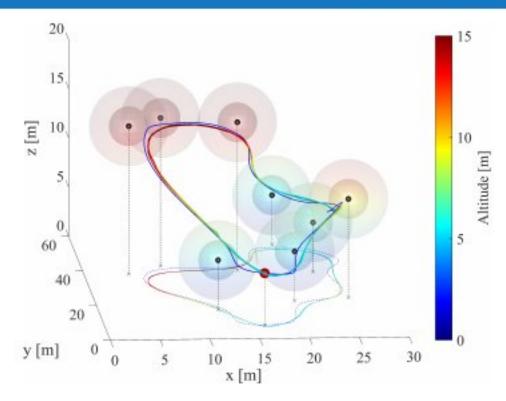
Example of a cubic Bézier curve

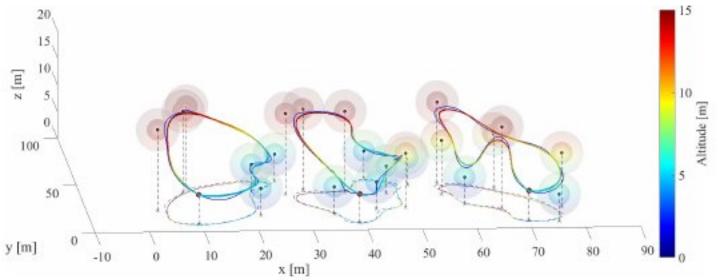


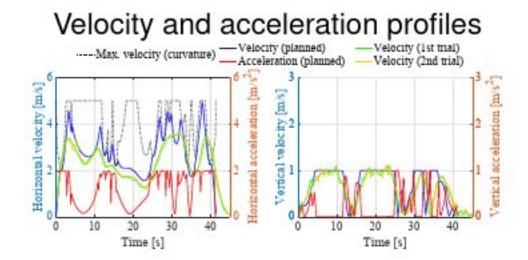
$$\mathbf{X}(\tau) = \mathbf{B}_0(1-\tau)^3 + 3\mathbf{B}_1\tau(1-\tau)^2 + 3\mathbf{B}_2\tau^2(1-\tau) + \mathbf{B}_3\tau^3$$

Faigl and Váňa: Surveillance Planning With Bézier Curves. IEEE Robotics and Automation Letters 2018.

Surveillance Planning with Bézier Curves Real Experimental Results



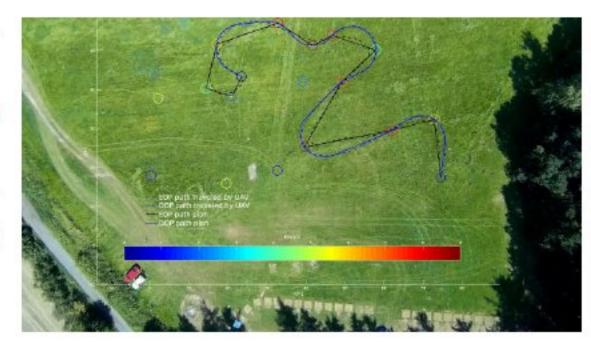




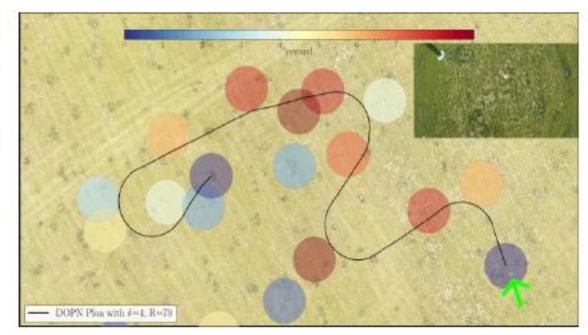
Faigl and Váňa: Surveillance Planning With Bézier Curves. IEEE Robotics and Automation Letters 2018.

Data Collection Planning with Limited Travel Budget Dubins Orienteering Problem (with Neighborhoods)

- Visit the most important targets because of limited travel budget
- The problem can be formulated as the Dubins Orienteering Problem (DOP)
- It can be solved using sampling-based methods, e.g., with Variable Neighborhood Search (VNS) combinatorial metaheuristic



- Pěnička, Faigl, Váňa and Saska: Dubins Orienteering Problem. IEEE Robotics and Automation Letters 2017.
- Similarly the Dubins Orienteering Problem with Neighborhoods (DOPN) can be formulated and solved
- We need to sample the waypoint locations and headings as in DTSPN

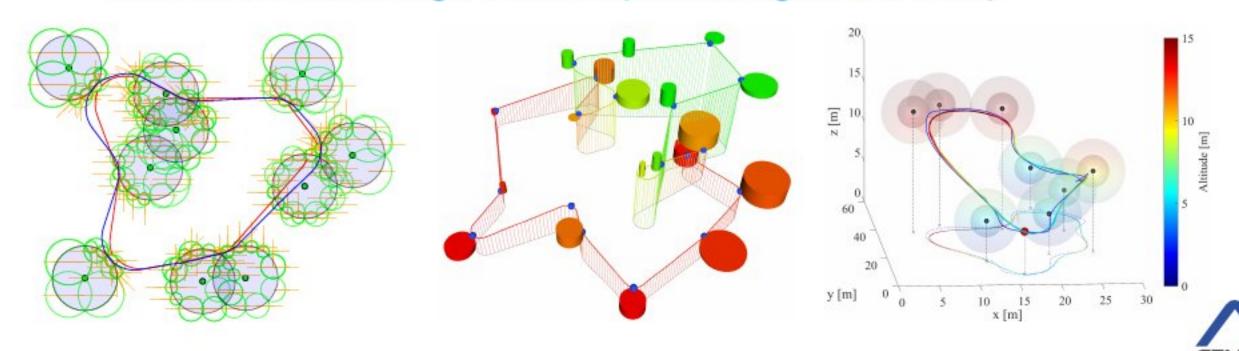


Pěnička, Faigl, Saska and Váňa: Dubins Orienteering Problem with Neighborhoods. ICUAS 2017.

Recent Progress in Information Gathering and Surveillance Missions Planning with Unmanned Aerial Vehicles – Summary

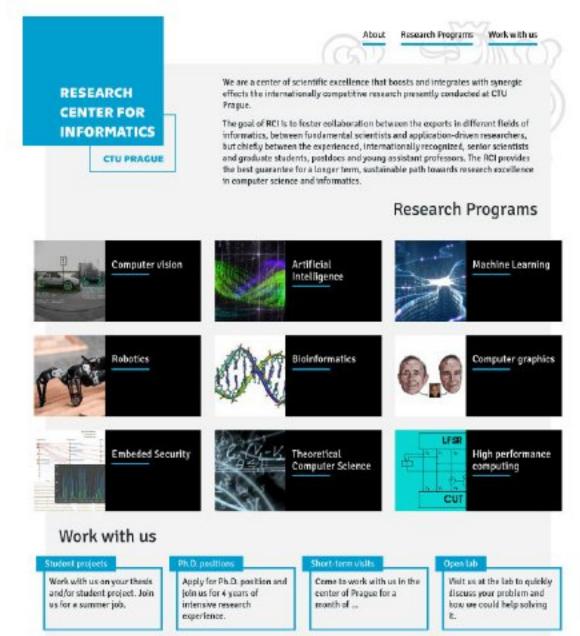
Summary

- Surveillance planning with curvature-constrained trajectory
 - Dubins Traveling Salesman Problem (with Neighborhoods) DTSPN
 - Informed sampling-based methods based on
 - Tight lower bound for the DTSPN based on the GDIP
 - 3D data collection planning with Dubins Airplane Model
 - Fast unsupervised learning based methods for DTSPN
 - Surveillance planning with Bézier curves
 - Dubins Orienteering Problem (with Neighborhoods)



People Behind the Scene

 The presented work are mostly results of my colleagues from the Computational Robotics Laboratory and Multi-Robot Systems Group



Work with us within the Research Center for Informatics – http://rci.cvut.cz

