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Abstract—
This paper presents a new multi-goal path planning method

that incorporates the localization uncertainty in a visual in-
spection surveillance task. It is shown that the reliability of the
executed found plan is increased if the localization uncertainty
of the used navigation method is taken into account during the
path planning. The navigation method follows the map&replay
technique based on a combination of monocular vision and
dead-reckoning. The mathematical description of the navigation
method allows efficient computation of the evolution of the robot
position uncertainty that is used in the proposed path planning
algorithm. The algorithm minimizes the length of the inspection
path while the robot position error at the goals is decreased.
The effect of the decreased localization uncertainty is examined
in several scenarios.

The presented experimental results indicate that probability
of the goals visits can be increased by the proposed algorithm.
Thus, the proposed approach opens further research directions
in the increasing reliability of the autonomous navigation by
the path planning using efficient and sufficiently informative
heuristics of the localization error evolution.

I. INTRODUCTION

The problem of autonomous navigation of a mobile robot
is addressed by various localization methods in order to
achieve sufficiently reliable navigation. The methods use
various techniques based on different assumptions and en-
vironment constraints. One of the popular technique is the
so-called SLAM in which no prior information about the
environment is known and the localization is performed on
the basis of the simultaneously created map. Even though a
significant progress has been made in this field, more reliable
localization techniques use a priori known map of the robot
surrounding environment. Moreover, the authors of SLAM
algorithms tends to consider only the immediate localization
error, and it is not exceptional that robots are navigated
manually during SLAM examination. On the other side of
the navigation methods, higher precision and reliability (in a
long term) is achieved at the cost of the previously created
map. In this sense, reliable navigation methods are based
on the visual servoing techniques using the map&replay
scenario [1], [2].

Beside improvements of the localization methods, the
reliability of the autonomous navigation may be increased
by consideration of environment properties and the localiza-
tion/navigation method in the preparation of the plan/path
for the navigation. The idea is simple: the robot identifies
areas, where the localization method would be too imprecise
and avoids these places. Although the idea is simple, the

problem is not easily tractable as it depends on appropriate
(realistic) environment models. Moreover the problem do-
main has to be extended by the “uncertainty” dimensions
(e.g. pose×uncertainties [3]) that increase the computational
complexity of the planning methods. Models of the uncer-
tainty evolution have to be sufficiently informative otherwise
the intended plan will be more likely useless. For example
a model of the increasing odometry error simply leads
to minimization of the planned path length, but it does
not provide a way to “correct” the robot pose estimation.
Therefore such model cannot be efficiently used in a long-
term planning. The models based on performing a simulation
of the localization within the map of the robot surrounding
environment are too computationally intensive and therefore
approximations have to be used. However, such simplified
models may lead to violate the required stability assumptions
of the localization methods [4], [5], [6].

In this paper, we consider a heuristic function describing
the evolution of the localization uncertainty in a surveillance
path planning problem that deals with visiting a set of areas
of interest (AoIs). The function is derived from the model of
a simple navigation principle [7] that uses the map&replay
technique. The principle is based on a detection of salient
objects and dead-reckoning measurements, e.g. an odometry,
and it is similar to [8], but its localization error is bound and
theoretically proven. The heuristic function is used in the
modified competitive rule of the self-organizing map (SOM)
approach for the Traveling Salesman Problem (TSP) [9]
that is applied to the multi-goal path planning problem, i.e.
the problem of finding a shortest path visiting given set of
goals [10]. The proposed method finds a path with lower
localization uncertainty at the visited AoIs than in the case
of methods minimizing only the path length.

This paper is organized as follows. The localization uncer-
tainty model and the derived heuristic function are described
in Section II together with an overview of the used SOM
scheme. The problem formulation is presented in Section III
The proposed planning method is presented in Section IV.
Experimental results of the proposed method are presented
in Section V. A discussion of the proposed approach and
remarks about future work are presented in the conclusion.

II. RELATED WORK

A. Navigation Method and Uncertainty Model

The used navigation method [7] is based on heading cor-
rections only while the traveled distance is estimated by a rel-



atively imprecise odometry. The heading corrections utilize
salient objects (Speeded Up Robust Features (SURF) [11])
recognized in the environment in the map&replay approach.
At first, the robot is tele-operated in the environment along
straight line segments in the mapping phase. For each
segment a set of visual landmarks is remembered and the
local length of the segment is measured by the odometry,
thus the long term instability of the odometry is not an
issue. In the replay phase, the robot is placed at the starting
segment and requested to travel the learned path. The current
visible landmarks are matched with the learned ones by the
histogram voting method, which realizes the so-called visual
compass. Based on the heading deviation the control law
steers the robot in the desired direction. Once the traveled
distance reaches the segment length, the robot is turned
into the direction of the next segment by the compass, and
the next segment is traversed in the same manner. Even
though the navigation method is very simple, it allows the
robot to continuously travel closed paths more than one
kilometer long in real outdoor environments in variable
lighting conditions and seasonal changes, see experimental
results in [7].

To establish the localization uncertainty model a simple
case of a robot navigating along a single segment aligned
with the x axis can be considered, see Fig. 1. Let the robot
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Fig. 1: Robot navigation model

start at position [ax, ay] and learned landmarks are in front of
the robot. During the robot movement, the nearby landmarks
disappear and more distant landmarks become visible, and
therefore landmarks can be considered in a constant distance
ρ ahead of the robot. The robot movement can be character-
ized by the differential equation dx/dy = ρ/− y. Assuming
c ≈ ay and boundary conditions the final robot position is
[bx, by] = [ax + s, ay exp(−s/ρ)]. The model of the robot
movement can be augmented by an odometry error ν and
heading sensor noise ξ (random variables drawn from the
Gaussian distribution with the zero mean and the variances
η and τ respectively) resulting in[
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]
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]
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]
, (1)

which rewritten to a matrix form denotes b = Ma+ s. For
an arbitrary orientation of the segment the matrix equation
can be complemented by the rotation matrix R:

b = RTMRa+RTs. (2)

The evolution of the robot position uncertainty for a single
segment is based on consideration of the robot position as a

random variable drawn from 2D normal distribution with
the mean â and the covariance matrix A. Due to linear
and absolute terms of Equation (2) the uncertainty at the
segment end is a normal distribution with the mean b̂ and
the covariance matrix B. To investigate the evolution of the
robot position covariance matrix, the robot position can be
denoted to a = â + ã, where â is the mean of a and
ã denotes a random variable with the zero mean and the
covariance matrix A. Regarding to independence of s̃ and ã

b̃b̃
T
= RTMRããTRTMTR+RT s̃s̃TR. (3)

For a sequence of segments, the end of the segment i is the
start of the segment i+ 1, i.e. ai+1 = bi = RT

i MiRiai +
RT
i si. The evolution of the uncertainty is a recurrent form

of Equation (3) that is in terms of covariance matrices

Ai+1 = RT
i M iRiAiR

T
i M

T
i Ri +RT

i SiRi, (4)

where
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]
The length of the traveled segment is si, ρ represents density
of the landmarks in the environment (an “average” distance
of the landmarks to the robot), η and τ represent precision
of the odometry and the heading sensor.

Equation (4) provides estimation of the robot position
uncertainty at the particular segment end and can be used
as a heuristic function of the uncertainty evolution in a
path planning algorithm. The stability (boundness) of the
navigation method for closed paths consisting of several
conjoined straight line segments is proven in [7] for a
robot moving in a plane with an imprecise measurements
of the traveled distance, a forward aimed camera capable
recognizing a nonempty subset of mapped landmarks and
paths with at least two noncollinear segments.

B. Self-Organizing Map Based Multi-Goal Path Planning

The multi-goal path planning problem is formulated as
the TSP, which allows to use any TSP solver. However,
self-organizing map (SOM) approach is useful, because it is
flexible enough to consider the evolution of the localization
uncertainty in a straightforward way. The SOM algorithm for
the TSP [9] has been selected as the main adaptation schema
being modified. The algorithm is Kohonen’s unsupervised
neural network in which nodes are organized into a cycle
and a solution of the TSP is represented by synaptic weights
of nodes that are adapted to the goals (cities) during the
self-adaptation process.

The adaptation consists of two phases: competitive and
cooperative. In the competitive phase, goals are presented to
the network in a random order. For each goal a winner (the
closest) node is found according to its Euclidean distance
to the goal. The cooperative phase is an adaptation of nodes
(weights) to the presented goal. A winner node and its neigh-
bouring nodes are adapted (moved) towards the presenting
goal g by the adaptation rule ν′j = νj + µf(σ, l)(g − νj),
where νj and g are coordinates of the node and the presented



goal, µ is the fractional learning rate and f(σ, l) is the neigh-
bouring function. The function is f(σ, l) = exp(−l2/σ2)
for l < d and f(σ, l) = 0 otherwise, where σ is the gain
parameter (also called the neighbourhood function variance),
l is the distance in a number of nodes measured along the
ring, d is the size of the winner node neighbourhood that is
set to d = 0.2m, where m is the number of nodes. After
the complete presentation of all goals (one adaptation step)
the gain is decreased by σ = (1− α)σ, where α is the gain
decreasing rate. The adaptation process is repeated until the
distance of a winner to the city is lower than given threshold,
e.g. 0.001. An inhibition mechanism [9] is used to avoid
nodes to win too often. The initial value of σ is set according
to σ0 = 0.06+12.41n, where n is the number of goals. The
learning and decreasing rates are µ = 0.6, α = 0.1. The
number of nodes m is set to m = 2.5n.

III. PROBLEM STATEMENT

The problem addressed in this paper is motivated by an
instance of the inspection task that is a problem of visiting
given set of goals. The goals’ positions in the environment
are known in advance. A mobile robot is requested to repeat-
ably visit the goals, due to its restricted sensing capabilities,
i.e. all goals are not visible from a single place. The problem
is to find a sequence of goals visits with a minimal inspection
period. The robot is capable to be navigated by the method
described in Section II-A. The robot uses imperfect sensors,
therefore its position estimation is imprecise.

Even though the stability of the used navigation method
has been theoretically proven and experimentally verified in
real-world environments, it does not mean that the local-
ization error is sufficiently low. Therefore, to increase the
probability of visiting the requested goals, the localization
uncertainty at the goal positions should be as small as
possible.

For simplicity, the environment is assumed to be obstacle
free, thus a path can be composed from straight line segments
connecting the goals. Once a path is found, the robot is
navigated along the path in the tele-operated manner in order
to create a map of the environment. After that, the robot is
requested to periodically visit the goals using the mapped
path.

IV. PLANNING WITH LOCALIZATION UNCERTAINTY

The proposed multi-goal path planning algorithm com-
bines Equation (4) and the SOM adaptation schema for
the TSP. The idea is based on evolution of the localization
uncertainty that depends on particular values of η, τ and ρ.
The imprecise odometry increases the error in the direction
of the robot movement, while the error is suppressed by
heading corrections in the lateral direction. For a robot
with single forward looking camera, it means that a lower
localization uncertainty is achieved by a moving along “zig-
zag” trajectories instead of a single straight line segment.
So, the direction from which the robot arrives to the goal
is crucial in the uncertainty decreasing process. In other
words, a simple straight line segment path between two goals

g1 and g2 increases the error in the segment (longitudinal)
direction due to the imprecise odometry. To decrease the
uncertainty at g2 caused by the odometry, the robot can be
navigated to an auxiliary navigation point close to g2. From
a point at some perimeter around g2, the robot movement
to g2 diminishes the previously increased error in the g1–
g2 longitudinal direction. The situation is demonstrated in
Fig. 4. A radius of the perimeter can be selected according
to the odometry error and profuseness of landmarks in the
environment that is represented by ρ.

Based on the observation the planning problem is formu-
lated as the following modification of the TSP. Each goal g
is represented by a group of points Pg = {pg,1, . . . , pg,k}
at the perimeter dp and the problem is to select a single
point from each group such that the uncertainty at each
goal is minimized and the total route length is minimized as
well. The SOM competitive and cooperative adaptation rules
are modified to consider the evolution of the localization
uncertainty using Equation (4). The ring of nodes must be
oriented in order to used the equation during the adaptation
process. It is achieved by the adaptation of the first and the
last ring nodes (in fact any two neighbouring nodes can be
used) to the selected starting goal prior presentation of other
goals to the network. During the ring evolution, each node
has associated the localization uncertainty represented by the
covariance matrix Aν . The covariance matrix at the first node
is computed from the connection of the node with the starting
goal by a straight line segment. The initial uncertainty at
the starting goal is set to zero. The matrix Aνi is computed
from Aνi−1

directly by Equation (4) where s is the Euclidean
distance between the nodes νi−1, νi. The modified rules are
as follows.

The winner node to a goal g is selected from not inhibited
nodes according to the Euclidean distance between a node
and the goal. The orientation of the ring defines forward
and backward neighbourhoods of the winner node, which are
utilized in the cooperative phase. The backward neighbouring
nodes of the winner node ν? are adapted to the perimeter
point pg,?, while ν? and its forward neighbouring nodes are
adapted towards g. The perimeter point pg,? is selected from
Pg according to

pg,? = argminp∈Pg (||Ag||2), (5)

where ||Ag||2 denotes the norm of the covariance matrix,
i.e. the maximal eigenvalue of AgA

T
g . The particular matrix

Ag is computed from the straight line segments (ν?−1, pg,.)
and (pg,., g), where ν?−1 is the first backward node of the
winner. After the adaptation, the nodes ν? and ν?−1 are
marked as inhibited for the rest of the current adaptation step.
The proposed algorithm is called dadapt from the “double
adaptation”, because of two performed adaptations: towards
pg,? and g.

The final path can be constructed by two methods. The
first variant is called dadapt-ring, because it directly uses the
ring as the final path. The second variant consider only the
winner nodes associated to the goals and their first backward



nodes associated to the perimeter points, the variant is called
dadapt-perim.

V. EXPERIMENTS

The proposed multi-goal path planning algorithm has
been experimentally verified in several scenarios. Four path
construction variants are considered in the algorithm exam-
ination. The first variant is a solution of the TSP without
consideration of the localization uncertainty and it is refereed
as simple. The second variant represents straightforward
decreasing of the longitudinal error and it is used as a
reference method to examine quality of SOM solutions. The
path is constructed from a TSP solution where an additional
perimeter point p is placed before each visited goal. The
point is placed at the perimeter in such a way, that line
segments (gi−1, p and (p, gi) form the right angle and one
of the two solutions is randomly selected. Finally two SOM
algorithm variants dadapt-perim and dadapt-ring are used.

The quality of solution is characterized by the length of
the found path L and the maximal localization uncertainty
at the visited goals Eg computed from the covariance matrix

Emax = maxg∈G

√
(||Ag||2).

Due to randomization of the SOM algorithm fifty solutions
are found by the particular algorithm variant and the quality
metrics are computed as average values. Besides, the best
solution with the lowest Ebest is used to estimate algorithm
capability to find good solutions.

Fig. 2: AR Drone quadcopter.

The considered robot is the AR Drone quadcopter [12]
shown in Fig. 2. The following values for the outdoor
environment have been set: η=0.1 m, τ=0.1 m and ρ=20 m.
In the case of an indoor environment, landmarks are closer,
therefore ρ = 5.5 has been used. The used SOM parameters
are σ0 = 12.14n + 0.6, µ = 0.6, α = 0.1, δ = 0.001, d =
0.2m, where n is the number of goals and m is the number
of nodes that is set to m = 4n. To examine the effect of the
perimeter, solutions have been found for several perimeter
radiuses. Each goal perimeter is sampled by 48 equidistantly
placed points in the proposed SOM algorithm with dual
adaptation.

A. Planned paths for Outdoor Environments

Experimental results for the square scenario are depicted
in Fig. 3 and examples of found paths for perimeter radius
19 meters are shown in Fig. 4. The results indicate that
considering localization uncertainty leads to more than two
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Fig. 3: Influence of the perimeter to the solution quality,
square scenario, η = 0.1, τ = 0.1, ρ = 20.

(a) simple,
L=200 m,
Emax=5 m

(b) single-perim,
L=261 m,
Emax=2 m

(c) dadapt-
ring, L=261 m,
Emax=2 m

Fig. 4: Solutions for the square scenario, perimeter at 19 m.
The green disks are goals, the green circles denote perime-
ters, the found path is in red and ellipses denote localization
uncertainty at goals (yellow) and perimeter points (blue).

times lower localization uncertainty at the goals, while the
length of the path is about thirty percents longer. The
proposed SOM algorithm with the dual adaptation provides
competitive results to the single-perim variant in this simple
scenario. The lowest Emax=1.94 m is achieved for the
perimeter at 19 m. The variances of the computed quality
metrics are very small due to simple configuration of the
goals, the highest values are for the dadapt variants, but
they are typically less than one meter for L and they are
in hundredths for Emax.
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(b) Emax of the best found
solution

Fig. 5: Influence of the perimeter to the solution quality,
square scenario, η = 0.1, τ = 0.1, ρ = 20.

To examine capabilities of the proposed algorithm in a
larger environment fourteen goals have been placed within
Charles’s Square location. Experimental results are presented
in Fig. 5. The dadapt algorithms provide worse average
solutions up to perimeter around twelve meters. However,



consideration of the best found solution provides interesting
observation. The dadapt-ring algorithm provides better so-
lutions for perimeters between ten and fourteen meters. In
these cases, the found solutions have localization uncertainty
about one meter lower than for the single-perim variant. The
perimeter at 18.5 m provides the lowest values of Emax.
The best solution found by the dadapt-ring algorithm for
additional twenty new runs and perimeter at twelve meters is
depicted in Fig. 6. The best solution provided by the single-
perim algorithm variant has quality metrics L=641.5 m with
Emax=3.65 m.

Fig. 6: The best found solution for Charles’s square scenario,
dadapt-ring,dp=12 m,L=674.4 m, Eg=2.85 m.

B. Computational Requirements

The algorithms have been implemented in C++, compiled
by the G++ 4.2 with the ’-O2’ optimization flag and executed
at workstation with 2 GHz CPU. The simple and single-perim
algorithms variants provide solution in units of milliseconds
(including the solution of the TSP). The dadapt algorithm
is more computationally intensive due the used number of
perimeters points, particularly solutions for the square sce-
nario have been found in tens of milliseconds and less than
four hundred milliseconds in the case of Charles’s square
scenario. Even though the covariance matrix is computed
for each node after each adaptation of the winner node, the
simplicity of Equation (4) allows to plan several paths and
select the best found solution or plan in real-time.

C. Real Indoor Experiments

Two scenarios have been used in real experiments within
indoor environment. In these scenarios, a white color card
with dimensions 85.6× 54 mm has been placed at each
goal. The AR drone has been manually navigated along the
given path, then it has been requested to traverse the closed
path autonomously. The drone has been placed at the last
goal approximately in the directions of the first goal or the
perimeter point at each run. At each goal (over the card)
the bottom camera has been used to take a snapshot of the
card. The success of the navigation has been measured by
the number of observed cards, i.e. a detected card in the
snapshot over the goal area. The view angle of the vertical
camera is approximately sixty degrees and the high of the
drone has been in 1.0 - 1.5 m above the goal.

Scenario A - In the first scenario, goals form a rectangle
with dimensions 6.25 × 3.75 m. Experimental results from
five runs are presented in Table I. The simple path is a direct

connection of the goals, while perimeter points have been
manually set before each goal in the perim path.

TABLE I: Scenario A

Path Planning Method Success Rates%
g1 g2 g3 g4 overall

simple 20 20 40 40 30
perim at 1.77m 60 60 40 20 45

Scenario B - A rectangle with 3.750 × 4.375 m and
perimeter at 2.2 m has been used in this scenario. Beside
the simple path, the best found solution by the method
dadapt-perim has been used. Several snapshots of the goal
area have been taken for the card detection, because of
the following control issue. The images from the on-board
cameras are transfered to the laptop for the image processing,
i.e. SURF computation and landmark matching. The WiFi
connection with the AR Drone caused unpredictable delays.
These delays did not significantly affect the main navigation
loop, however the command to take a snapshot of the goal
area has been sometimes delayed. Even though the AR Drone
tries to stabilize its position, under certain circumstances it is
slightly moved. Thus, to avoid possible miss detection of the
goal area from a single snapshot, several images have been
captured and the goal visit has been considered as successful
if the card has been detected in at least one snapshot.

The used paths are shown in Fig. 7. Notice that the
perimeter point is needed only for the last goal g4. The first
perimeter point lies on the straight line segment from the start
goal the g1. In other cases the perimeter points are at distance
30 cm from the straight line segment, which in fact is very
close to the expected localization precision. Success rates of
the detected goals from tens runs are presented in Table II.
The AR Drone during experiments is shown in Fig. 8.

(a) simple, Emax=0.58m (b) dadapt-perim, Emax=0.45m

Fig. 7: Found paths by the simple and dadapt-perim al-
gorithm variants and for the perimeter at 2.2 m in the
scenario B.

The single-perim algorithm variant is not suitable for this
scenario as distances between goals are relatively small and
perimeter points are not necessary for first goals. The best
found solutions has Emax=0.5 m and is about three meters
longer than the dadapt-perim solution.



TABLE II: Scenario B

Path Planning Method Success Rates%
g1 g2 g3 g4 overall

simple 100 100 60 70 82.5
dadapt-perim 100 100 90 90 95.0

(a) goal snapshot (b) front camera view (c) detected landmarks

Fig. 8: The AR Drone during experiment, the user interface
overlays the real scene, the small picture is from the AR
drone on-board cameras.

VI. DISCUSSION AND CONCLUSION

The presented results show that the expected localization
uncertainty can be decreased by consideration of heuristic
function describing evolution of the localization error. The
used heuristic function is based on simple and stable naviga-
tion method, thus regarding to its real performance [7] and
presented experimental results it seems that the function is
computationally efficient and sufficiently informative. The
proposed multi-goal path planning algorithm shows how
the function can be used in the path planning task. Even
though the results show uncertainty reduction, the benefit of
the used SOM schema is mainly in providing solution of
the multi-goal path planning problem. The straightforward
single-perim variant provides better results in most cases
with less required computational times. The efficiency of
perimeter point placement by the single-perim method is
caused by the dominant longitudinal error, because the right
angle constraint is sufficient to decrease this type of error. In
a general case, consideration of other orientation of the error,
i.e. axes of the error ellipse, can lead to higher reduction.
Also the axes directions depend on the order of goals in
the path, thus the post-processing procedure can provide
sub-optimal solutions. From this point of view, the best
found solution found by the dadapt algorithm can be a
motivation for further investigation of SOM application in
the formulated multi-goal path planning problem. Moreover,
for the small indoor environment, the dadapt method is able
to find solutions in which all perimeter points are not needed.
The expected benefit of SOM is in its flexibility to deal with
various problem variants, e.g. considering obstacles in the
environment [13], restrictions of directions to reach goals or
in the case of several mobile robots [14].

Our future intention is to examined the proposed method
in a real-world outdoor scenario1. The main idea of the

1We have planed experiment in Charles Square park, however due to
weather conditions and low turbine power of the UAV it was not possible.
Even small wind made the robot control unpredictable.

uncertainty reduction is to increase the reliability of the
inspection. The found plan represents only expected localiza-
tion uncertainty, thus it is clear that real performance will be
different and a robot will unlikely be navigated precisely to
the goal position. On the other side, it is sufficient if the robot
is navigated to the goal vicinity, because a robot can be then
locally navigated to the goal by another navigation method.
For an UAV, it means that forward looking camera can be
used for the navigation to the goal vicinity, while the vertical
camera is used for the local navigation to the goal. The
execution of the plan has one important aspect relating to the
localization uncertainty. If the goal is successfully recognized
and its position is known, it can be used to localize the
robot. Thus, additional reduction of the localization error is
achieved, which increases the probability of the next goal
visit. These ideas will be investigated in our future work.
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